Question #253138

consider the vector space of R3

2.1. Show that <x, y>=x1y1+2x2y2+x3y3, x=[x1x2x3]\begin{bmatrix} x1 \\ x2 \\ x3 \end{bmatrix} ,y=[y1y2y3]\begin{bmatrix} y1 \\ y2 \\ y3 \end{bmatrix}\in R3

 2.2. Are the vectors [111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, [111]\begin{bmatrix} 1 \\ 1 \\ - 1 \end{bmatrix}, [111]\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} Linearly independent?

2.3. Apply the Grem-Schmidt process to the following subset of R3 [111]\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, [111]\begin{bmatrix} 1 \\ 1 \\ - 1 \end{bmatrix}, [111]\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} to find an orthogonal basis with the inner product defined in 2.1. for the span of this subset


1
Expert's answer
2021-10-19T17:20:02-0400

2.

111111111=22=4\begin{vmatrix} 1 & 1& 1\\ 1 & 1&-1\\ 1&-1&-1 \end{vmatrix}=-2-2=-4

Since determinant is not equal zero, the vectors are linearly independent.


3.

orthogonal basis:

v1=u1=(1,1,1)v_1=u_1=(1,1,1)

v2=u2u1,u2u12u1=(1,1,1)23(1,1,1)=(1/3,1/3,5/3)v_2=u_2-\frac{\langle u_1,u_2\rangle}{|u_1|^2}u_1=(1,1,-1)-\frac{2}{3}(1,1,1)=(1/3,1/3,-5/3)

v3=u3u1,u3u12u1u3,v2v22v2=(1,1,1)+23(1,1,1)49(1/3,1/3,5/3)=v_3=u_3-\frac{\langle u_1,u_3\rangle}{|u_1|^2}u_1-\frac{\langle u_3,v_2\rangle}{|v_2|^2}v_2=(1,-1,-1)+\frac{2}{3}(1,1,1)-\frac{4}{9}(1/3,1/3,-5/3)=

=(5/3,1/3,11/27)=(5/3,-1/3,11/27)


1.

Let (e1,e2,e3)(e_1,e_2,e_3) be a basis.

Then:

x=x1e1+x2e2+x3e3x=x_1e_1+x_2e_2+x_3e_3

y=y1e1+y2e2+y3e3y=y_1e_1+y_2e_2+y_3e_3


x,y=ijxiyiei,ej\langle x,y \rangle =\sum_i\sum_j x_iy_i\langle e_i,e_j\rangle

if e1,e1=1,e1,e2=e1,e3=e2,e3=0,e2,e2=2,e3,e3=1\langle e_1,e_1\rangle=1,\langle e_1,e_2\rangle=\langle e_1,e_3\rangle=\langle e_2,e_3\rangle=0,\langle e_2,e_2\rangle=2,\langle e_3,e_3\rangle=1

then x,y=\langle x,y \rangle= x1y1+2x2y2+x3y3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS