Question #253141

Show that P^-1HP = 3à —3 matrix



Use cofactor method to find the inverse of P


1
Expert's answer
2022-01-25T04:43:00-0500

We shall find the inverse of matrix p,p, denoted as p1,p^{-1}, using the cofactor method

Say the 33 X 33 matrix is given by

p=[210111321]p=\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 2 & 1 \end{bmatrix}


Next, we find the determinant of pp denoted as p\mid p\mid


p=2112111131+01132\mid p \mid=2\begin{vmatrix} -1 & 1 \\ 2 & 1 \end{vmatrix}-1\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}+0\begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix}


=2(3)1(2)+0=2(-3)-1(-2)+0


=6+2= -6+2


=4=-4

Thus, we have p=4\mid p \mid= -4


Now, We shall find the cofactor which is given by

=[+11211131+11321021+20312132+10112011+2111]= \begin{bmatrix} +\begin{vmatrix} -1 & 1 \\ 2 & 1 \end{vmatrix} & -\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} & + \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix}\\ - \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} & +\begin{vmatrix} 2 & 0 \\ 3 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}\\ + \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} & -\begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} & +\begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \end{bmatrix}


=[325121123]=\begin{bmatrix} -3 & 2 & 5 \\ -1 & 2 & -1\\ 1 & -2 & -3 \end{bmatrix}


Now, by finding the transpose of the above matrix and dividing by the determinant

we have,


=14[311222513]=p1\displaystyle=\frac{1}{-4}\begin{bmatrix} -3 & -1 & 1 \\ 2 & 2 & -2\\ 5 & -1 & -3 \end{bmatrix}=p^{-1}


Hence, we have

p1=[341414121212541434]\displaystyle p^{-1}= \begin{bmatrix} \frac{3}{4} & \frac{1}{4} & \frac{-1}{4} \\ \frac{-1}{2}& \frac{-1}{2} & \frac{1}{2}\\ \frac{-5}{4} & \frac{1}{4} & \frac{3}{4} \end{bmatrix}

which is the inverse of the matrix by the cofactor method.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS