We shall find the inverse of matrix p , p, p , denoted as p − 1 , p^{-1}, p − 1 , using the cofactor method
Say the 3 3 3 X 3 3 3 matrix is given by
p = [ 2 1 0 1 − 1 1 3 2 1 ] p=\begin{bmatrix}
2 & 1 & 0 \\
1 & -1 & 1 \\
3 & 2 & 1
\end{bmatrix} p = ⎣ ⎡ 2 1 3 1 − 1 2 0 1 1 ⎦ ⎤
Next, we find the determinant of p p p denoted as ∣ p ∣ \mid p\mid ∣ p ∣
∣ p ∣ = 2 ∣ − 1 1 2 1 ∣ − 1 ∣ 1 1 3 1 ∣ + 0 ∣ 1 − 1 3 2 ∣ \mid p \mid=2\begin{vmatrix}
-1 & 1 \\
2 & 1
\end{vmatrix}-1\begin{vmatrix}
1 & 1 \\
3 & 1
\end{vmatrix}+0\begin{vmatrix}
1 & -1 \\
3 & 2
\end{vmatrix} ∣ p ∣= 2 ∣ ∣ − 1 2 1 1 ∣ ∣ − 1 ∣ ∣ 1 3 1 1 ∣ ∣ + 0 ∣ ∣ 1 3 − 1 2 ∣ ∣
= 2 ( − 3 ) − 1 ( − 2 ) + 0 =2(-3)-1(-2)+0 = 2 ( − 3 ) − 1 ( − 2 ) + 0
= − 6 + 2 = -6+2 = − 6 + 2
= − 4 =-4 = − 4
Thus, we have ∣ p ∣ = − 4 \mid p \mid= -4 ∣ p ∣= − 4
Now, We shall find the cofactor which is given by
= [ + ∣ − 1 1 2 1 ∣ − ∣ 1 1 3 1 ∣ + ∣ 1 − 1 3 2 ∣ − ∣ 1 0 2 1 ∣ + ∣ 2 0 3 1 ∣ − ∣ 2 1 3 2 ∣ + ∣ 1 0 − 1 1 ∣ − ∣ 2 0 1 1 ∣ + ∣ 2 1 1 1 ∣ ] = \begin{bmatrix}
+\begin{vmatrix}
-1 & 1 \\
2 & 1
\end{vmatrix} &
-\begin{vmatrix}
1 & 1 \\
3 & 1
\end{vmatrix} &
+ \begin{vmatrix}
1 & -1 \\
3 & 2
\end{vmatrix}\\
- \begin{vmatrix}
1 & 0 \\
2 & 1
\end{vmatrix} & +\begin{vmatrix}
2 & 0 \\
3 & 1
\end{vmatrix} & -\begin{vmatrix}
2 & 1 \\
3 & 2
\end{vmatrix}\\
+ \begin{vmatrix}
1 & 0 \\
-1 & 1
\end{vmatrix} & -\begin{vmatrix}
2 & 0 \\
1 & 1
\end{vmatrix} & +\begin{vmatrix}
2 & 1 \\
1 & 1
\end{vmatrix}
\end{bmatrix} = ⎣ ⎡ + ∣ ∣ − 1 2 1 1 ∣ ∣ − ∣ ∣ 1 2 0 1 ∣ ∣ + ∣ ∣ 1 − 1 0 1 ∣ ∣ − ∣ ∣ 1 3 1 1 ∣ ∣ + ∣ ∣ 2 3 0 1 ∣ ∣ − ∣ ∣ 2 1 0 1 ∣ ∣ + ∣ ∣ 1 3 − 1 2 ∣ ∣ − ∣ ∣ 2 3 1 2 ∣ ∣ + ∣ ∣ 2 1 1 1 ∣ ∣ ⎦ ⎤
= [ − 3 2 5 − 1 2 − 1 1 − 2 − 3 ] =\begin{bmatrix}
-3 & 2 & 5 \\
-1 & 2 & -1\\
1 & -2 & -3
\end{bmatrix} = ⎣ ⎡ − 3 − 1 1 2 2 − 2 5 − 1 − 3 ⎦ ⎤
Now, by finding the transpose of the above matrix and dividing by the determinant
we have,
= 1 − 4 [ − 3 − 1 1 2 2 − 2 5 − 1 − 3 ] = p − 1 \displaystyle=\frac{1}{-4}\begin{bmatrix}
-3 & -1 & 1 \\
2 & 2 & -2\\
5 & -1 & -3
\end{bmatrix}=p^{-1} = − 4 1 ⎣ ⎡ − 3 2 5 − 1 2 − 1 1 − 2 − 3 ⎦ ⎤ = p − 1
Hence, we have
p − 1 = [ 3 4 1 4 − 1 4 − 1 2 − 1 2 1 2 − 5 4 1 4 3 4 ] \displaystyle p^{-1}= \begin{bmatrix}
\frac{3}{4} & \frac{1}{4} & \frac{-1}{4} \\
\frac{-1}{2}& \frac{-1}{2} & \frac{1}{2}\\
\frac{-5}{4} & \frac{1}{4} & \frac{3}{4}
\end{bmatrix} p − 1 = ⎣ ⎡ 4 3 2 − 1 4 − 5 4 1 2 − 1 4 1 4 − 1 2 1 4 3 ⎦ ⎤
which is the inverse of the matrix by the cofactor method.
Comments