f(x,y)=(2x−y, 3x+y), g(x,y)=(4x−2y, 2x+y)
a)Let A be the matrix of f with respect to the standard basis,
B be the matrix of f with respect to the basis e1=(1,2), e2=(−1,1) , and P be the transition matrix.
A=(23−11)
P=(12−11) , P−1=31(1−211)=(1/3−2/31/31/3)
B=P−1AP=(1/3−2/31/31/3)(23−11)(12−11)=(1/3−2/31/31/3)(05−3−2)=(5/35/3−5/34/3)
b) (f∘g)(x,y)=f(4x−2y, 2x+y)=(2(4x−2y)−(2x+y), 3(4x−2y)+(2x+y))=(6x−5y,14x−5y)
c) g(x,y)=(4x−2y, 2x+y)=(z,w)
Let G be the matrix of f : G=(42−21)
Then G−1=81(1−224)=(1/8−1/41/41/2)
g−1(z,w)=(8z+4w, −4z+2w)
Answer:
a) B=(5/35/3−5/34/3)
b) (f∘g)(x,y)=(6x−5y,14x−5y)
c) g−1(z,w)=(8z+4w, −4z+2w)
Comments