Consider the linear transformations :
f:R^2→R^2 g:R^2→R^2
f (x,y)→(2x-y,3x+y) g(x,y)→(4x-2y,2x+y)
a) Determine the matrix of linear transformation f relative to the basis
{e1=(1,2),e2=(-1,1)}
b)dertimine (fog)(xy)
c) find g^-1
"f(x,y)=(2x-y,\\ 3x+y),\\ \\ \\ g(x,y)=(4x-2y, \\ 2x+y)"
a)Let "A" be the matrix of "f" with respect to the standard basis,
"B" be the matrix of "f" with respect to the basis "e_1=(1,2), \\ e_2=(-1,1)" , and "P" be the transition matrix.
"A=\\begin{pmatrix}\n 2 & -1 \\\\\n 3 & 1\n\\end{pmatrix}"
"P=\\begin{pmatrix}\n 1 & -1 \\\\\n 2 & 1\n\\end{pmatrix}" , "P^{-1}=\\frac{1}{3} \\begin{pmatrix}\n 1 & 1 \\\\\n -2 & 1\n\\end{pmatrix}=\\begin{pmatrix}\n 1\/3 & 1\/3 \\\\\n -2\/3 & 1\/3\n\\end{pmatrix}"
"B=P^{-1}AP =\\begin{pmatrix}\n 1\/3 & 1\/3 \\\\\n -2\/3 & 1\/3\n\\end{pmatrix} \\begin{pmatrix}\n 2 & -1 \\\\\n 3 & 1\n\\end{pmatrix} \\begin{pmatrix}\n 1 & -1 \\\\\n 2 & 1\n\\end{pmatrix}\n=\\begin{pmatrix}\n 1\/3 & 1\/3 \\\\\n -2\/3 & 1\/3\n\\end{pmatrix} \\begin{pmatrix}\n 0 & -3 \\\\\n 5 & -2\n\\end{pmatrix}=\\begin{pmatrix}\n 5\/3 & -5\/3 \\\\\n 5\/3 & 4\/3\n\\end{pmatrix}"
b) "(f\\circ g)(x,y) = f(4x-2y,\\ 2x+y)=\\big(2(4x-2y)-(2x+y),\\ 3(4x-2y)+(2x+y)\\big)= (6x-5y, 14x-5y)"
c) "g(x,y)=(4x-2y, \\ 2x+y)=(z,w)"
Let "G" be the matrix of "f" : "G=\\begin{pmatrix}\n 4 & -2 \\\\\n 2 & 1\n\\end{pmatrix}"
Then "G^{-1}=\\frac {1}{8} \\begin{pmatrix}\n 1 & 2 \\\\\n -2 & 4\n\\end{pmatrix}=\\begin{pmatrix}\n 1\/8 & 1\/4 \\\\\n -1\/4 & 1\/2\n\\end{pmatrix}"
"g^{-1}(z,w)=(\\frac{z}{8}+\\frac{w}{4}, \\ -\\frac{z}{4}+\\frac{w}{2})"
Answer:
a) "B= \\begin{pmatrix}\n 5\/3 & -5\/3 \\\\\n 5\/3 & 4\/3\n\\end{pmatrix}"
b) "(f\\circ g)(x,y) = (6x-5y, 14x-5y)"
c) "g^{-1}(z,w)=(\\frac{z}{8}+\\frac{w}{4}, \\ -\\frac{z}{4}+\\frac{w}{2})"
Comments
Leave a comment