Question #235890

Determine all eigenvalues and the corresponding eigenspaces for the matrix 𝐴 = [ −9 4 4 −8 3 4 −16 8 7 ]


1
Expert's answer
2021-09-16T00:43:33-0400
AλI=(9λ4483λ41687λ)A-\lambda I=\begin{pmatrix} -9-\lambda & 4 & 4 \\ -8& 3-\lambda & 4 \\ -16 & 8 & 7-\lambda \\ \end{pmatrix}

det(AλI)=9λ4483λ41687λ\det(A-\lambda I)=\begin{vmatrix} -9-\lambda & 4 & 4 \\ -8& 3-\lambda & 4 \\ -16 & 8 & 7-\lambda \\ \end{vmatrix}=(9λ)3λ487λ484167λ=(-9-\lambda)\begin{vmatrix} 3-\lambda & 4 \\ 8 & 7-\lambda \end{vmatrix}-4\begin{vmatrix} -8 & 4 \\ -16 & 7-\lambda \end{vmatrix}

+483λ168=(9λ)(2110λ+λ232)+4\begin{vmatrix} -8 & 3-\lambda \\ -16 & 8 \end{vmatrix}=(-9-\lambda)(21-10\lambda+\lambda^2-32)

4(56+8λ+64)+4(64+4816λ)-4(-56+8\lambda+64)+4(-64+48-16\lambda)

=99+11λ+90λ+10λ29λ2λ3=99+11\lambda+90\lambda+10\lambda^2-9\lambda^2-\lambda^3

3232λ6464λ-32-32\lambda-64-64\lambda

=λ3+λ2+5λ+3=0=-\lambda^3+\lambda^2+5\lambda+3=0

λ2(λ+1)+2λ(λ+1)+3(λ+1)=0-\lambda^2(\lambda+1)+2\lambda(\lambda+1)+3(\lambda+1)=0

(λ+1)(λ22λ3)=0-(\lambda+1)(\lambda^2-2\lambda-3)=0

(λ+1)2(λ3)=0-(\lambda+1)^2(\lambda-3)=0



λ1=1,λ2=1,λ3=3\lambda_1=-1, \lambda_2=-1, \lambda_3=3


These are the eigenvalues: 1,1,3.-1, -1, 3.


λ=1\lambda=-1

AλI=(9+14483+141687+1)A-\lambda I=\begin{pmatrix} -9+1 & 4 & 4 \\ -8& 3+1 & 4 \\ -16 & 8 & 7+1 \\ \end{pmatrix}

=(8448441688)=\begin{pmatrix} -8 & 4 & 4 \\ -8 & 4 & 4 \\ -16 & 8 & 8 \\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1

(8440001688)\begin{pmatrix} -8 & 4 & 4 \\ 0 & 0 & 0 \\ -16 & 8 & 8 \\ \end{pmatrix}

R3=R32R1R_3=R_3-2R_1

(844000000)\begin{pmatrix} -8 & 4 & 4 \\ 0 & 0 & 0 \\ 0 & 0 &0 \\ \end{pmatrix}

R1=R1/(8)R_1=R_1/(-8)

(11/21/2000000)\begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 &0 \\ \end{pmatrix}

(11/21/2000000)(x1x2x3)=(000)\begin{pmatrix} 1 & -1/2 & -1/2 \\ 0 & 0 & 0 \\ 0 & 0 &0 \\ \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{pmatrix}

If we take x2=t,x3=s,x_2=t, x_3=s, then x1=12t+12sx_1=\dfrac{1}{2}t+\dfrac{1}{2}s

Thus


x=(s/2+t/211)s=(1/210)t+(1/201)s\vec x=\begin{pmatrix} s/2+t/2 \\ 1 \\ 1 \\ \end{pmatrix}s=\begin{pmatrix} 1/2 \\ 1 \\ 0 \\ \end{pmatrix}t+\begin{pmatrix} 1/2 \\ 0 \\ 1 \\ \end{pmatrix}s


The eigenvectors are


(1/210),(1/201)\begin{pmatrix} 1/2 \\ 1 \\ 0 \\ \end{pmatrix},\begin{pmatrix} 1/2 \\ 0 \\ 1 \\ \end{pmatrix}

λ=3\lambda=3

AλI=(9344833416873)A-\lambda I=\begin{pmatrix} -9-3 & 4 & 4 \\ -8& 3-3 & 4 \\ -16 & 8 & 7-3 \\ \end{pmatrix}

=(12448041684)=\begin{pmatrix} -12 & 4 & 4 \\ -8 & 0 & 4 \\ -16 & 8 & 4 \\ \end{pmatrix}

R2=R22R1/3R_2=R_2-2R_1/3

(124408/34/31684)\begin{pmatrix} -12 & 4 & 4 \\ 0 & -8/3 & 4/3 \\ -16 & 8 & 4 \\ \end{pmatrix}

R3=R34R1/3R_3=R_3-4R_1/3

(124408/34/308/34/3)\begin{pmatrix} -12 & 4 & 4 \\ 0 & -8/3 & 4/3 \\ 0 & 8/3 & -4/3 \\ \end{pmatrix}

R3=R3+R2R_3=R_3+R_2

(124408/34/3000)\begin{pmatrix} -12 & 4 & 4 \\ 0 & -8/3 & 4/3 \\ 0 & 0 & 0 \\ \end{pmatrix}

R2=3R2/8R_2=-3R_2/8

(1244011/2000)\begin{pmatrix} -12 & 4 & 4 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ \end{pmatrix}

R1=R1/12R_1=-R_1/12

(11/31/3011/2000)\begin{pmatrix} 1 &-1/3 & -1/3 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ \end{pmatrix}

R1=R1+R2/3R_1=R_1+R_2/3

(101/2011/2000)\begin{pmatrix} 1 &0 & -1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ \end{pmatrix}(101/2011/2000)(x1x2x3)=(000)\begin{pmatrix} 1 &0 & -1/2 \\ 0 & 1 & -1/2 \\ 0 & 0 & 0 \\ \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{pmatrix}

If we take x3=t,x_3=t, then x1=12t,x2=12tx_1=\dfrac{1}{2}t, x_2=\dfrac{1}{2}t

Thus


x=(t/2t/2t)=(1/21/21)t\vec x=\begin{pmatrix} t/2 \\ t/2 \\ t \\ \end{pmatrix}=\begin{pmatrix} 1/2 \\ 1/2 \\ 1 \\ \end{pmatrix}t


The eigenvector is


(1/21/21)\begin{pmatrix} 1/2 \\ 1/2 \\ 1 \\ \end{pmatrix}



Eigenvalue: −1, multiplicity: 2, eigenvectors: (1/210),(1/201)\begin{pmatrix} 1/2 \\ 1 \\ 0 \\ \end{pmatrix},\begin{pmatrix} 1/2 \\ 0 \\ 1 \\ \end{pmatrix}


Eigenvalue: 3, multiplicity: 1, eigenvector: (1/21/21)\begin{pmatrix} 1/2 \\ 1/2 \\ 1 \\ \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS