Using matrix method, solve the simultaneous equations {x-3y=3
5x-9y=11
"A\\bar x=\\bar b"
"A=\\begin{pmatrix}\n 1 & -3 \\\\\n 5 & -9\n\\end{pmatrix},\\bar b=\\begin{pmatrix}\n 3 \\\\\n 11\n\\end{pmatrix}" .
"det(A)=-9+15=6."
"A^{-1}=\\frac{1}{6}\\begin{pmatrix}\n -9 & 3 \\\\\n -5 & 1\n\\end{pmatrix}"
"\\bar x=\\begin{pmatrix}\n x \\\\\n y\n\\end{pmatrix}=A^{-1}\\bar b=\\frac{1}{6}\\begin{pmatrix}\n -9& 3 \\\\\n -5 & 1\n\\end{pmatrix}\\begin{pmatrix}\n 3 \\\\\n 11\n\\end{pmatrix}=\\frac{1}{6}\\begin{pmatrix}\n 6 \\\\\n -4\n\\end{pmatrix}=\\begin{pmatrix}\n 1 \\\\\n -\\frac{2}{3}\n\\end{pmatrix}"
Thus, "x=1,y=-\\frac{2}{3}."
Comments
Leave a comment