Let us use the subspace criterion: a nonempty subset W⊂V is a vector subspace of the space V over the field R , if and only if the following statements are true: 1)∀u,v∈W(u+v)∈W; 2)∀α∈R∀u∈W(αu)∈W .
Let's check these statements for the case V=R3 and W={(a,b,c);a+b+c=0}
1) ∀u(a;b;c),v(m;n;k)∈W (u+v)=(a+m;b+n;c+k) and a+m+b+n+c+k=a+b+c+m+n+k=0+0=0 . So (u+v)∈W
2) ∀α∈R∀u(a;b;c)∈W (αu)=(αa;αb;αc) and αa+αb+αc=α(a+b+c)=0 .
So (αu)∈W . So W is a vector subspace of the space V
Comments
Leave a comment