Question #235293

Find the standard matrix A for the linearly transformation T :R^2_R^2


1
Expert's answer
2021-09-10T10:03:35-0400

Find the standard matrix of T:R2R2T:\R^2\to \R^2 rotates points (about the origin) through π/4−π/4 radians (clockwise).

Let T:R2R2T:\R^2\to \R^2 be a linear transformation given by rotating vectors in the counter-clockwise direction through an angle of θ.θ.

Then the matrix AA of TT is given by


T((10))=(cosθsinθ)T\bigg(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\bigg)=\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}

T((01))=(sinθcosθ)T\bigg(\begin{pmatrix} 0 \\ 1 \end{pmatrix}\bigg)=\begin{pmatrix} - \sin \theta \\ \cos \theta \end{pmatrix}

A=(cosθsinθsinθcosθ)A=\begin{pmatrix} \cos \theta & - \sin\theta \\ \sin \theta & \cos \theta \end{pmatrix}

Given θ=π/4.\theta=\pi/4. Then


A=(cos(π/4)sin(π/4)sin(π/4)cos(π/4))=(2/22/22/22/2)A=\begin{pmatrix} \cos (\pi/4) & - \sin (\pi/4) \\ \sin (\pi/4) & \cos(\pi/4) \end{pmatrix}=\begin{pmatrix} \sqrt{2}/2& -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS