(a) Obtain a system of linear equations to represent the given information.
Construct a system containing three linear equations.
x+y+z=20
2x+y−z=23
3x+y+z=46
(b) Write down the system in (a) as a matrix equation.
AX=B
A=⎝⎛1231111−11⎠⎞,X=⎝⎛xyz⎠⎞,B=⎝⎛202346⎠⎞
⎝⎛1231111−11⎠⎞⎝⎛xyz⎠⎞=⎝⎛202346⎠⎞
(c) Use inverse matrix to solve for x,y and z
AX=B
A−1AX=A−1B
X=A−1B
detA=∣∣1231111−11∣∣=1∣∣11−11∣∣−1∣∣23−11∣∣+1∣∣2311∣∣
=1+1−(2+3)+2−3=−4=0=>A−1 exists Find the cofactor matrix:
C11=(−1)(1+1)∣∣11−11∣∣=2
C12=(−1)(1+2)∣∣23−11∣∣=−5
C13=(−1)(1+3)∣∣2311∣∣=−1
C21=(−1)(2+1)∣∣1111∣∣=0
C22=(−1)(2+2)∣∣1311∣∣=−2
C23=(−1)(2+3)∣∣1311∣∣=2
C31=(−1)(3+1)∣∣111−1∣∣=−2
C32=(−1)(3+2)∣∣121−1∣∣=3
C33=(−1)(3+3)∣∣1211∣∣=−1 The cofactor matrix is
⎝⎛20−2−5−23−12−1⎠⎞ The adjugate matrix is
⎝⎛2−5−10−22−23−1⎠⎞
A−1=−41⎝⎛2−5−10−22−23−1⎠⎞
=⎝⎛−1/25/41/401/2−1/21/2−3/41/4⎠⎞
⎝⎛xyz⎠⎞=⎝⎛−1/25/41/401/2−1/21/2−3/41/4⎠⎞⎝⎛202346⎠⎞
=⎝⎛−10+0+2325+23/2−69/25−23/2+23/2⎠⎞=⎝⎛1325⎠⎞ Then x=13,y=2,z=5.
(13,2,5).
Comments