Question #234080

The sum of three numbers is 20. If we multiply the first number by 2 and add the second

number and subtract the third number, then we get 23. If we multiply the first number by 3

and add second and third number to it, then we get 46. Let x be the first number, y be the

second number and z


be the third number.


(a) Obtain a system of linear equations to represent the given information.

(b) Write down the system in (a) as a matrix equation.

(c) Use inverse matrix to solve for x , y and z .


1
Expert's answer
2021-09-07T17:32:59-0400

(a) Obtain a system of linear equations to represent the given information.

Construct a system containing three linear equations.


x+y+z=20x+y+z=20

2x+yz=232x+y-z=23

3x+y+z=463x+y+z=46

 (b) Write down the system in (a) as a matrix equation.


AX=BAX=B

A=(111211311),X=(xyz),B=(202346)A=\begin{pmatrix} 1 & 1 & 1\\ 2 & 1 & -1\\ 3 & 1 & 1\\ \end{pmatrix}, X=\begin{pmatrix} x\\ y \\ z \end{pmatrix}, B=\begin{pmatrix} 20\\ 23\\ 46 \end{pmatrix}

(111211311)(xyz)=(202346)\begin{pmatrix} 1 & 1 & 1\\ 2 & 1 & -1\\ 3 & 1 & 1\\ \end{pmatrix}\begin{pmatrix} x\\ y \\ z \end{pmatrix}=\begin{pmatrix} 20\\ 23\\ 46 \end{pmatrix}

(c) Use inverse matrix to solve for x,yx,y and zz


AX=BAX=B

A1AX=A1BA^{-1}AX=A^{-1}B

X=A1BX=A^{-1}B

detA=111211311=1111112131+12131\det⁡A=\begin{vmatrix} 1 & 1 & 1\\ 2 & 1 & -1\\ 3 & 1 & 1\\ \end{vmatrix}=1\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}-1\begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix}+1\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}

=1+1(2+3)+23=40=>A1 exists=1+1-(2+3)+2-3=-4\not=0=>A^{-1}\ exists

Find the cofactor matrix:


C11=(1)(1+1)1111=2C_{11}=(-1)^{(1+1)}\begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix}=2

C12=(1)(1+2)2131=5C_{12}=(-1)^{(1+2)}\begin{vmatrix} 2 & -1 \\ 3 & 1 \end{vmatrix}=-5

C13=(1)(1+3)2131=1C_{13}=(-1)^{(1+3)}\begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix}=-1

C21=(1)(2+1)1111=0C_{21}=(-1)^{(2+1)}\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}=0


C22=(1)(2+2)1131=2C_{22}=(-1)^{(2+2)}\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}=-2


C23=(1)(2+3)1131=2C_{23}=(-1)^{(2+3)}\begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix}=2

C31=(1)(3+1)1111=2C_{31}=(-1)^{(3+1)}\begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix}=-2

 

C32=(1)(3+2)1121=3C_{32}=(-1)^{(3+2)}\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix}=3

C33=(1)(3+3)1121=1C_{33}=(-1)^{(3+3)}\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix}=-1

The cofactor matrix is


(251022231)\begin{pmatrix} 2 & -5 & -1\\ 0 & -2 & 2\\ -2 & 3 & -1\\ \end{pmatrix}

The adjugate matrix is


(202523121)\begin{pmatrix} 2 & 0 & -2\\ -5 & -2 & 3\\ -1 & 2 & -1\\ \end{pmatrix}


A1=14(202523121)A^{-1}=\dfrac{1}{-4}\begin{pmatrix} 2 & 0 & -2\\ -5 & -2 & 3\\ -1 & 2 & -1\\ \end{pmatrix}

=(1/201/25/41/23/41/41/21/4)=\begin{pmatrix} -1/2 & 0 &1/2\\ 5/4 & 1/2 & -3/4\\ 1/4 & -1/2 & 1/4\\ \end{pmatrix}

(xyz)=(1/201/25/41/23/41/41/21/4)(202346)\begin{pmatrix} x\\ y \\ z \end{pmatrix}=\begin{pmatrix} -1/2 & 0 &1/2\\ 5/4 & 1/2 & -3/4\\ 1/4 & -1/2 & 1/4\\ \end{pmatrix}\begin{pmatrix} 20\\ 23\\ 46 \end{pmatrix}


=(10+0+2325+23/269/2523/2+23/2)=(1325)=\begin{pmatrix} -10+0+23 \\ 25+23/2-69/2 \\ 5-23/2+23/2\\ \end{pmatrix}=\begin{pmatrix} 13\\ 2\\ 5\\ \end{pmatrix}

Then x=13,y=2,z=5.x=13, y=2, z=5.

 

(13,2,5).(13, 2, 5).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS