Question #233054

Using matrix method, solve the simultaneous equations

{x-3y=3

5x-9y=11


1
Expert's answer
2021-09-06T19:20:18-0400
AX=BAX=B

A1AX=A1BA^{-1}AX=A^{-1}B

X=A1BX=A^{-1}B

A=(1359),X=(xy),B=(311)A=\begin{pmatrix} 1 & -3 \\ 5 & -9 \end{pmatrix}, X=\begin{pmatrix} x \\ y \end{pmatrix},B=\begin{pmatrix} 3 \\ 11 \end{pmatrix}

(1359)(xy)=(311)\begin{pmatrix} 1 & -3 \\ 5 & -9 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix}=\begin{pmatrix} 3 \\ 11 \end{pmatrix}

detA=1359=1(9)(3)(5)=60\det A=\begin{vmatrix} 1 & -3 \\ 5 & -9 \end{vmatrix}=1(-9)-(-3)(5)=6\not=0

A1=16(9351)=(3/21/25/61/6)A^{-1}=\dfrac{1}{6}\begin{pmatrix} -9 & 3 \\ -5 & 1 \end{pmatrix}=\begin{pmatrix} -3/2 & 1/2 \\ -5/6 & 1/6 \end{pmatrix}

(3/21/25/61/6)(311)=(9/2+11/215/6+11/6)\begin{pmatrix} -3/2 & 1/2 \\ -5/6 & 1/6 \end{pmatrix}\begin{pmatrix} 3\\ 11 \end{pmatrix}=\begin{pmatrix} -9/2+11/2 \\ -15/6+11/6 \end{pmatrix}

=(12/3)=\begin{pmatrix} 1 \\ -2/3 \end{pmatrix}

x=1,y=23x=1, y=-\dfrac{2}{3}

(1,23)(1, -\dfrac{2}{3})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS