Given matrix is:"\\begin{bmatrix}\n 2 & 3 & -2 \\\\\n -2 & 1 & 1\\\\\n1 & 0 & 2\n\\end{bmatrix}"
Now, solving "\\begin{vmatrix}\n 2-\\lambda & 3 & -2 \\\\\n -2 & 1-\\lambda & 1\\\\\n1 & 0 & 2-\\lambda\n\\end{vmatrix}=0" , we get:
"\\Rightarrow(2-\\lambda)[(1-\\lambda)(2-\\lambda)-0]-3[-2(2-\\lambda)-1]-2[0-1(1-\\lambda)]=0\\\\\n\\Rightarrow (1-\\lambda)(2-\\lambda)^2+12-6\\lambda+3+2-2\\lambda=0\\\\\n\\Rightarrow (1-\\lambda)(2-\\lambda)^2+17-8\\lambda=0\\\\\n\\Rightarrow 4+\\lambda^2-4\\lambda-4\\lambda-\\lambda^3+4\\lambda+17-8\\lambda=0\\\\\n\\Rightarrow -\\lambda^3+\\lambda^2-12\\lambda+21=0\\\\\n\\Rightarrow \\lambda^3-\\lambda^2+12\\lambda-21=0\\\\"
So, sum of eigenvalues of matrix is: "-(\\frac{-1}{1})=1"
and product of eigenvalues of matrix is: "-(\\frac{21}{1})=-21"
Comments
Leave a comment