Given matrix is:⎣⎡2−21310−212⎦⎤
Now, solving ∣∣2−λ−2131−λ0−212−λ∣∣=0 , we get:
⇒(2−λ)[(1−λ)(2−λ)−0]−3[−2(2−λ)−1]−2[0−1(1−λ)]=0⇒(1−λ)(2−λ)2+12−6λ+3+2−2λ=0⇒(1−λ)(2−λ)2+17−8λ=0⇒4+λ2−4λ−4λ−λ3+4λ+17−8λ=0⇒−λ3+λ2−12λ+21=0⇒λ3−λ2+12λ−21=0
So, sum of eigenvalues of matrix is: −(1−1)=1
and product of eigenvalues of matrix is: −(121)=−21
Comments