Question #232859

let A be a 7*5 matrix with rank(A)=2 complete dim(row space of A) , dim( column space of A) ,dim (null space of A) and (null space of A^t)


1
Expert's answer
2021-09-14T06:09:29-0400

dim(row space of A)

dim(rowspace(A))=rank(A)=dim(colspace(A))dim(rowspace(A))+dim(null(A))=7dim(rowspace(A))=7dim(col(A))dim(rowspace(A))=74=3dim (rowspace(A)) = rank(A) = dim (colspace(A))\\ dim (rowspace(A))+dim(null (A))=7\\ dim (rowspace(A))=7-dim(col (A))\\ dim (rowspace(A))=7-4=3\\


dim( column space of A)

[A]57[A]_{5*7} gives us a transformation T with domain v of dimension T

dim(col(A))+dim(null(A))=7dim(col(A))=7dim(col(A))dim(col(A))=74=3dim(col (A))+dim(null (A))=7\\ dim(col (A))=7-dim(col (A))\\ dim(col (A))=7-4=3\\


dim (null space of A)

dim(null(A))+dim(col(A))=7dim(null(A))=7dim(col(A))dim(null(A))=75=2dim(null (A))+dim(col (A))=7\\ dim(null (A))=7-dim(col (A))\\ dim(null (A))=7-5=2\\


(null space of At)

(nullspaceofAt)=(nullspaceofA)=2(null space of A^t)= (null space of A)=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS