Use row reduction to determine whether the set of vectors {(1,2,0), (0,1,-1),(1,1,2)} is linearly independent in
(12001−1112)−I∼(12001−10−12)+II∼(12001−1001)\left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 1&1&2 \end{matrix}} \right)\begin{matrix} {}\\ {}\\ { - I} \end{matrix} \sim \left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 0&{ - 1}&2 \end{matrix}} \right)\begin{matrix} {}\\ {}\\ { + II} \end{matrix} \sim \left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 0&0&1 \end{matrix}} \right)⎝⎛1012110−12⎠⎞−I∼⎝⎛10021−10−12⎠⎞+II∼⎝⎛1002100−11⎠⎞
Since the rank of the resulting matrix is 3, the system of these vectors is linearly independent
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments