Question #232491

 Use row reduction to determine whether the set of vectors {(1,2,0), (0,1,-1),(1,1,2)} is linearly independent in                                                                 


1
Expert's answer
2021-09-06T07:03:40-0400

(120011112)I(120011012)+II(120011001)\left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 1&1&2 \end{matrix}} \right)\begin{matrix} {}\\ {}\\ { - I} \end{matrix} \sim \left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 0&{ - 1}&2 \end{matrix}} \right)\begin{matrix} {}\\ {}\\ { + II} \end{matrix} \sim \left( {\begin{matrix} 1&2&0\\ 0&1&{ - 1}\\ 0&0&1 \end{matrix}} \right)

Since the rank of the resulting matrix is ​​3, the system of these vectors is linearly independent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS