L e t L : R 3 → R 2   b e   d e f i n e d   b y : L ( x 1 x 2 x 3 ) = ( x 1 + x 2 x 2 + x 3 ) ∴ k e r L = ker  L = { ( x 1 x 2 x 3 ) ∣ ( x 1 + x 2 x 2 + x 3 ) = ( 0 0 ) } T h e   h o m o g e n e o u s   s y s t e m   c o e f f i c i e n t   m a t r i x : ( 1 1 0 0 1 1 )  has r.r.e.f.  ( 1 0 − 1 0 1 1 ) x 3   i s   a r b i t r a r y , x 1 = x 3 , x 2 = − x 3 ker  L = span  { ( 1 , − 1 , 1 ) ⏟ } b a s i s   f o r   k e r L . ker  L ≠ { ( 0 , 0 , 0 ) }  range  L = { ( x 1 + x 2 x 2 + x 3 ) ∣  for all  x 1 , x 2 , x 3 } = { x 1 ( 1 0 ) + x 2 ( 1 1 ) + x 3 ( 0 1 ) ∣  for   all  x 1 , x 2 , x 3 } F i n d   a   b a s i s   f o r   r a n g e   L = s p a n { ( 1 , 0 ) , ( 1 , 1 ) , ( 0 , 1 ) } ( 1 1 0 0 1 1 )  has r.r.e.f.  ( 1 0 − 1 0 1 1 ) ⇒  range  L =  span  { ( 1 , 0 ) , ( 1 , 1 ) ⏟ } r a n g e L = R 2 ⇒ L   i s   o n t o . Let   L: R^{3} \rightarrow R^{2} \   be\ defined \ by:\\
    
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right)\\
    
\therefore{ker} L=  
    
\begin{aligned} &\operatorname{ker} L= \\
&\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mid\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0
\end{array}\right)\right\}
\end{aligned}
    \\
The \ homogeneous \ system \ coefficient \ matrix:
    
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
    
  x_{3}  \  is \ arbitrary, \\   x_{1}=x_{3}, x_{2}=-x_{3}  \\
  \operatorname{ker} L=\operatorname{span}\{\underbrace{(1,-1,1)}\}  \\ 
    \\\\\\ \quad   basis \ for \ ker   L.  \\
\\\operatorname{ker} L \neq\{(0,0,0)\}\\
  
\begin{aligned}
&\text { range } L=\left\{\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right) \mid \text { for all } x_{1}, x_{2}, x_{3}\right\} \\
&=\left\{x_{1}\left(\begin{array}{l}
1 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
1 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{l}
0 \\
1
\end{array}\right) \mid\right. \text { for } \\
&\text { all } \left.x_{1}, x_{2}, x_{3}\right\}
\end{aligned}\\
  
Find \ a \ basis \ for \ range \  L=  span\{(1,0),(1,1),(0,1)\}
  \\
  
\begin{aligned}
&\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \\
&\Rightarrow \text { range } L=\text { span }\{\underbrace{(1,0),(1,1)}\}
\end{aligned}\\
  
range  L=R^{2} \\\Rightarrow L \  is \ onto. L e t L : R 3 → R 2   b e   d e f in e d   b y : L ⎝ ⎛  x 1  x 2  x 3   ⎠ ⎞  = ( x 1  + x 2  x 2  + x 3   ) ∴ k er L =  ker L = ⎩ ⎨ ⎧  ⎝ ⎛  x 1  x 2  x 3   ⎠ ⎞  ∣ ( x 1  + x 2  x 2  + x 3   ) = ( 0 0  ) ⎭ ⎬ ⎫   T h e   h o m o g e n eo u s   sys t e m   coe ff i c i e n t   ma t r i x : ( 1 0  1 1  0 1  )  has r.r.e.f.  ( 1 0  0 1  − 1 1  ) x 3    i s   a r bi t r a ry , x 1  = x 3  , x 2  = − x 3  ker L = span { ( 1 , − 1 , 1 )  } ba s i s   f or   k er L . ker L  = {( 0 , 0 , 0 )}   range  L = { ( x 1  + x 2  x 2  + x 3   ) ∣  for all  x 1  , x 2  , x 3  } = { x 1  ( 1 0  ) + x 2  ( 1 1  ) + x 3  ( 0 1  ) ∣  for   all  x 1  , x 2  , x 3  }  F in d   a   ba s i s   f or   r an g e   L = s p an {( 1 , 0 ) , ( 1 , 1 ) , ( 0 , 1 )}  ( 1 0  1 1  0 1  )  has r.r.e.f.  ( 1 0  0 1  − 1 1  ) ⇒  range  L =  span  { ( 1 , 0 ) , ( 1 , 1 )  }  r an g e L = R 2 ⇒ L   i s   o n t o .   
                             
Comments