L e t L : R 3 → R 2 b e d e f i n e d b y : L ( x 1 x 2 x 3 ) = ( x 1 + x 2 x 2 + x 3 ) ∴ k e r L = ker L = { ( x 1 x 2 x 3 ) ∣ ( x 1 + x 2 x 2 + x 3 ) = ( 0 0 ) } T h e h o m o g e n e o u s s y s t e m c o e f f i c i e n t m a t r i x : ( 1 1 0 0 1 1 ) has r.r.e.f. ( 1 0 − 1 0 1 1 ) x 3 i s a r b i t r a r y , x 1 = x 3 , x 2 = − x 3 ker L = span { ( 1 , − 1 , 1 ) ⏟ } b a s i s f o r k e r L . ker L ≠ { ( 0 , 0 , 0 ) } range L = { ( x 1 + x 2 x 2 + x 3 ) ∣ for all x 1 , x 2 , x 3 } = { x 1 ( 1 0 ) + x 2 ( 1 1 ) + x 3 ( 0 1 ) ∣ for all x 1 , x 2 , x 3 } F i n d a b a s i s f o r r a n g e L = s p a n { ( 1 , 0 ) , ( 1 , 1 ) , ( 0 , 1 ) } ( 1 1 0 0 1 1 ) has r.r.e.f. ( 1 0 − 1 0 1 1 ) ⇒ range L = span { ( 1 , 0 ) , ( 1 , 1 ) ⏟ } r a n g e L = R 2 ⇒ L i s o n t o . Let L: R^{3} \rightarrow R^{2} \ be\ defined \ by:\\
L\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right)\\
\therefore{ker} L=
\begin{aligned} &\operatorname{ker} L= \\
&\left\{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \mid\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0
\end{array}\right)\right\}
\end{aligned}
\\
The \ homogeneous \ system \ coefficient \ matrix:
\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
x_{3} \ is \ arbitrary, \\ x_{1}=x_{3}, x_{2}=-x_{3} \\
\operatorname{ker} L=\operatorname{span}\{\underbrace{(1,-1,1)}\} \\
\\\\\\ \quad basis \ for \ ker L. \\
\\\operatorname{ker} L \neq\{(0,0,0)\}\\
\begin{aligned}
&\text { range } L=\left\{\left(\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right) \mid \text { for all } x_{1}, x_{2}, x_{3}\right\} \\
&=\left\{x_{1}\left(\begin{array}{l}
1 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{l}
1 \\
1
\end{array}\right)+x_{3}\left(\begin{array}{l}
0 \\
1
\end{array}\right) \mid\right. \text { for } \\
&\text { all } \left.x_{1}, x_{2}, x_{3}\right\}
\end{aligned}\\
Find \ a \ basis \ for \ range \ L= span\{(1,0),(1,1),(0,1)\}
\\
\begin{aligned}
&\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right) \text { has r.r.e.f. }\left(\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right) \\
&\Rightarrow \text { range } L=\text { span }\{\underbrace{(1,0),(1,1)}\}
\end{aligned}\\
range L=R^{2} \\\Rightarrow L \ is \ onto. L e t L : R 3 → R 2 b e d e f in e d b y : L ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ = ( x 1 + x 2 x 2 + x 3 ) ∴ k er L = ker L = ⎩ ⎨ ⎧ ⎝ ⎛ x 1 x 2 x 3 ⎠ ⎞ ∣ ( x 1 + x 2 x 2 + x 3 ) = ( 0 0 ) ⎭ ⎬ ⎫ T h e h o m o g e n eo u s sys t e m coe ff i c i e n t ma t r i x : ( 1 0 1 1 0 1 ) has r.r.e.f. ( 1 0 0 1 − 1 1 ) x 3 i s a r bi t r a ry , x 1 = x 3 , x 2 = − x 3 ker L = span { ( 1 , − 1 , 1 ) } ba s i s f or k er L . ker L = {( 0 , 0 , 0 )} range L = { ( x 1 + x 2 x 2 + x 3 ) ∣ for all x 1 , x 2 , x 3 } = { x 1 ( 1 0 ) + x 2 ( 1 1 ) + x 3 ( 0 1 ) ∣ for all x 1 , x 2 , x 3 } F in d a ba s i s f or r an g e L = s p an {( 1 , 0 ) , ( 1 , 1 ) , ( 0 , 1 )} ( 1 0 1 1 0 1 ) has r.r.e.f. ( 1 0 0 1 − 1 1 ) ⇒ range L = span { ( 1 , 0 ) , ( 1 , 1 ) } r an g e L = R 2 ⇒ L i s o n t o .
Comments