You are given the system of linear equations
2x+ky=5, x+3y=7,
where k
k is a constant.
The system above has no solution when k=
"2x+ky=5\\Rightarrow 2x+ky-5=0 ...(1)\n\\\\ x+3y=7\\Rightarrow x+3y-7=0 ...(2)\n\\\\Comparing\\ (1)\\ with \\ a_1x+b_1y+c_1=0\\ and\\ (2)\\ with \\ a_2x+b_2y+c_2=0\n\\\\a_1=2,b_1=k,c_1=-5,a_2=1,b_2=3,c_2=-7"
For no solution,
"\\frac{a_1}{a_2}=\\frac{b_1}{b_2}\\neq\\frac{c_1}{c_2}\n\\\\\\frac{2}{1}=\\frac{k}{3}\\neq\\frac{-5}{-7}\n\\\\\\Rightarrow k=6, k\\neq \\frac {15}{7}"
Comments
Leave a comment