Question #232038

Given a transformation T:R^2→R^2 defined as T(x_1,x_2 )=(0,x_1-x_2). Find ker⁡(T) and R(T), range of T


1
Expert's answer
2021-09-02T07:25:17-0400
T[x1x2]=[0011][x1x2]T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}

[0011][1100]\begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}\to\begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}

x1=x2x_1=x_2

ker(T)={(x1,x2)R2x1=x2}\ker(T)=\{(x_1, x_2)\in\R^2|x_1=x_2\}



Hence {(1,1)}\{(1,1)\} is a basis of ker(T).\ker(T).

The set {(1,0)}\{(1,0)\} forms a basis for the range of T,R(T).T, R(T).


Rank theorem


rank(T)+nullity(T)=dim(R2)rank(T ) + nullity(T ) = dim(\R^2)

1+1=21+1=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS