Answer to Question #232549 in Linear Algebra for Amuj

Question #232549

Let  be a linear transformation. Let  and  be zero vectors of  and. Show that


1
Expert's answer
2021-09-07T01:25:46-0400

Let T:RnRmLet \ T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\  be a linear transformation.

Let 0n and 0m be zero vectors of Rn and Rm,respectively.Show that T(0n)=0m.Let \ \mathbf{0}_{n} \ and \ \mathbf{0}_{m} \ be \ zero \ vectors \ of \ \mathbb{R}^{n} \ and \ \mathbb{R}^{m} , respectively. \\Show \ that \ T\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}.


Observe that we have 00n=0n.(This is a scalar multiplication of the scalar 0and the vector 0nNow we have T(0n)=T(00n)=0T(0n)=0mHere we used the one of the properties of the linear transformation T in the second equality.Note that 0n=0n0nThus we haveT(0n)=T(0n0n)=T(0n)T(0n)=0mwhere we used the linearity of T in the second equality.In the last equality, note that the vector T(0n) is mdimensional vector.Observe \ that \ we \ have\ 0 \cdot \mathbf{0}_{n}=\mathbf{0}_{n} .\\ (This \ is \ a \ scalar \ multiplication \ of \ the \ scalar \ 0 and \ the \ vector \ \mathbf{0}_{n} \\ Now \ we \ have\ T\left(\mathbf{0}_{n}\right)=T\left(0 \cdot \mathbf{0}_{n}\right)=0 \cdot T\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}\\ Here \ we \ used \ the \ one\ of\ the \ properties \ of \ the\ linear\ transformation \ T \ \\ in \ the\ second \ equality. \\ Note \ that \ \mathbf{0}_{n}=\mathbf{0}_{n}-\mathbf{0}_{n} \\ Thus \ we \ have \\ T\left(\mathbf{0}_{n}\right)=T\left(\mathbf{0}_{n}-\mathbf{0}_{n}\right)=T\left(\mathbf{0}_{n}\right)-T\left(\mathbf{0}_{n}\right)=\mathbf{0}_{m}\\ where \ we \ used \ the \ linearity \ of \ T \ in \ the \ second \ equality.\\ In \ the \ last \ equality, \ note \ that \ the \ vector \ T\left(\mathbf{0}_{n}\right) \ is \ m -dimensional \ vector.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment