Question #232862

consider matrix A=[101 212 313 111] find the nullity and rank


1
Expert's answer
2021-09-05T18:57:17-0400
A=[101212313111]A=\begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \\ \end{bmatrix}

R2=R22R1R_2=R_2-2R_1


[101010313111]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 3 & 1 & 3 \\ 1 & 1 & 1 \\ \end{bmatrix}

R3=R33R1R_3=R_3-3R_1


[101010010111]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ \end{bmatrix}

R4=R4R1R_4=R_4-R_1


[101010010010]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}

R3=R3R2R_3=R_3-R_2


[101010000010]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{bmatrix}

R4=R4R2R_4=R_4-R_2


[101010000000]\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \end{bmatrix}

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.2.


In the case of an m×nm\times n matrix, the dimension of the domain is n,n, the number of columns in the matrix. 

By the Rank-Nullity Theorem


Rank(A)+Nullity(A)=n.{\displaystyle \operatorname {Rank} (A)+\operatorname {Nullity} (A)=n.}

Nullity(A)=32=1{Nullity} (A)=3-2=1

The nullity of the given matrix AA is 1.1.

The rank of the given matrix AA is 2.2.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS