5)Solve the following linear programming problem using two phase method.
Minimize z = -3x1 + x2 - 2x3
Subject to
x1 +3x2 +x3 ≤5
2x1 –x2 +x3 ≥2
4x1 + 3x2 - 2x3 = 5
x1, x2, x3 ≥ 0
SOLUTION
Changing the minimisation to maximization
Maximize z = 3x1 – x2 + 2x3
subject to
x1 + 3x2 + x3 ≤ 5
2x1 – x2 + x3 ≥ 2
4x1 + 3x2 - 2x3 = 5
x1, x2, x3 ≥ 0
Converting inequalities to equalities and introducing slack, surplus and artificial variables:
x1+ 3x2+ x3+ x4= 5
2x1– x2+ x3– x5+ A1= 2
4x1+ 3x2 - 2x3 + A2 = 5
x1, x2, x3, x4, x5, A1, A2 ≥ 0
Where:
A1 and A2 are artificial variables
x4 is a slack variable
x5 is a surplus variable
.
Maximize 0x1 + 0x2 + 0x3 + 0x4 + 0x5 + (–A1) + (–A2)
subject to
x1 + 3x2 + x3 + x4 = 5
2x1 – x2 + x3 – x5 + A1 = 2
4x1 + 3x2 - 2x3 + A2 = 5
x1, x2, x3, x4, x5, A1, A2 ≥ 0
cj 0 0 0 0 0 -1 -1 XB
cB Bv x1 x2 x3 x4 x5 A1 A2
0 x4 1 3 1 1 0 0 0 5
-1 A1 2 -1 1 0 -1 1 0 2
-1 A2 4 3 -2 0 0 0 1 5
zj–cj. -6 -2 1 0 1 0 0
Key column = x1 column
Key row = A1 row
Key element = 2
XB... solution values
A1 departs and x1 enters.
TABLE 2
CJ 0 0 0 0 0 -1 XB
CB BV X1 X2 X3 X4 X5 A2
0 X4 0 7/2 1/2 1 1/2 0 4
0 X1 1 -½ ½ 0 -½ 0 1
-1 A2 0 5 -4 0 2 1 1
Zj- Cj 0 -5 4 0 -2 0
A2 departs and x2 enters.
Both the artificial variables have been removed from the basis.
TABLE 3
cj 3 -1 2 0 0
CB BV x1 x2 x3 x4 x5 XB
0 x4 0 0 33/10 1 -9/13 33/10
3 x1 1 0 1/10 0 -3/10 11/10
-1 x2 0 1 -4/5 0 2/5 1/5
Zj-Cj 0 0 -3/10 0 -13/10
TABLE 4
cj 3 -1 2 0 0
cB Bv x1 x2 x3 x4 X5 XB
0 x4 0 9/4 3/2 1 0 15/4
3 x1 1 3/4 -1/2 0 0 5/4
0 x5 0 5/2 -2 0 1 1/2
zj-cj. 0 13/4 -7/2 0 0
cj 3 -1 2 0 0 xb
Bv x1 x2 x3 x4 x5
2 x3 0 3/2 1 2/3 0 5/2
3 x11 3/2 0 1/3 0 5/2
0 x5 0 11/2 0 4/3 1 11/2
zj-cj 0 17/2 0 7/3 0
An optimal is x1 = 5/2, x2 = 0, x3 = 5/2. The associated optimal value of the objective function is z = 3 X (5/2) – 0 + 2 X (5/2) = 25/2.
Comments
Leave a comment