Answer to Question #234618 in Linear Algebra for Bless

Question #234618

Suppose that A, B, C are 3×3 matrices with det (A) = 2, det (B) = 3 and det (C) = 5. Compute the following determinants:

(a) det (AB)

(b) det (3AB-2C2)

(c) det (A2CTB-1)


1
Expert's answer
2021-09-09T05:01:29-0400

ANSWERS

(a)det(AB)=6(b)det(3AB2C2)=150(c)det(A2CTB1)=203(a) \det (AB) = 6 \\ (b) \det (3AB^{-2}C^2) = 150 \\ (c) \det (A^2C^TB^{-1}) = \frac{20}{3}


SOLUTIONS

(a)det(AB)=det(A)×det(B)(a) \det(AB) = \det(A) \times \det(B)

=2×3= 2 \times 3

=6=6


(b)det(3AB2C2)=33det(A)det(B)2det(C)2(b) \det(3AB^{-2}C^2) = 3^3 \cdot \det(A) \cdot \det(B)^{-2} \cdot \det (C)^2

=27×2×132×52= 27 \times 2 \times \frac{1}{3^2} \times 5^2

=27×2×19×25= 27 \times 2 \times \frac {1}{9} \times 25

=150= 150


(c)det(A2CTB1)=det(A)2det(CT)det(B1)(c) \det(A^2C^TB^{-1}) = \det(A)^2 \cdot \det(C^T) \cdot \det (B^{-1})

=22×5×13= 2^2 \times 5 \times \frac {1}{3}

=4×5×13= 4 \times 5 \times \frac {1}{3}

=203= \frac {20}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment