Suppose that A, B, C are 3×3 matrices with det (A) = 2, det (B) = 3 and det (C) = 5. Compute the following determinants:
(a) det (AB)
(b) det (3AB-2C2)
(c) det (A2CTB-1)
ANSWERS
(a)det(AB)=6(b)det(3AB−2C2)=150(c)det(A2CTB−1)=203(a) \det (AB) = 6 \\ (b) \det (3AB^{-2}C^2) = 150 \\ (c) \det (A^2C^TB^{-1}) = \frac{20}{3}(a)det(AB)=6(b)det(3AB−2C2)=150(c)det(A2CTB−1)=320
SOLUTIONS
(a)det(AB)=det(A)×det(B)(a) \det(AB) = \det(A) \times \det(B)(a)det(AB)=det(A)×det(B)
=2×3= 2 \times 3=2×3
=6=6=6
(b)det(3AB−2C2)=33⋅det(A)⋅det(B)−2⋅det(C)2(b) \det(3AB^{-2}C^2) = 3^3 \cdot \det(A) \cdot \det(B)^{-2} \cdot \det (C)^2(b)det(3AB−2C2)=33⋅det(A)⋅det(B)−2⋅det(C)2
=27×2×132×52= 27 \times 2 \times \frac{1}{3^2} \times 5^2=27×2×321×52
=27×2×19×25= 27 \times 2 \times \frac {1}{9} \times 25=27×2×91×25
=150= 150=150
(c)det(A2CTB−1)=det(A)2⋅det(CT)⋅det(B−1)(c) \det(A^2C^TB^{-1}) = \det(A)^2 \cdot \det(C^T) \cdot \det (B^{-1})(c)det(A2CTB−1)=det(A)2⋅det(CT)⋅det(B−1)
=22×5×13= 2^2 \times 5 \times \frac {1}{3}=22×5×31
=4×5×13= 4 \times 5 \times \frac {1}{3}=4×5×31
=203= \frac {20}{3}=320
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment