Suppose that A, B, C are 3×3 matrices with det (A) = 2, det (B) = 3 and det (C) = 5. Compute the following determinants:
(a) det (AB)
(b) det (3AB-2C2)
(c) det (A2CTB-1)
ANSWERS
"(a) \\det (AB) = 6 \\\\\n(b) \\det (3AB^{-2}C^2) = 150 \\\\\n(c) \\det (A^2C^TB^{-1}) = \\frac{20}{3}"
SOLUTIONS
"(a) \\det(AB) = \\det(A) \\times \\det(B)"
"= 2 \\times 3"
"=6"
"(b) \\det(3AB^{-2}C^2) = 3^3 \\cdot \\det(A) \\cdot \\det(B)^{-2} \\cdot \\det (C)^2"
"= 27 \\times 2 \\times \\frac{1}{3^2} \\times 5^2"
"= 27 \\times 2 \\times \\frac {1}{9} \\times 25"
"= 150"
"(c) \\det(A^2C^TB^{-1}) = \\det(A)^2 \\cdot \\det(C^T) \\cdot \\det (B^{-1})"
"= 2^2 \\times 5 \\times \\frac {1}{3}"
"= 4 \\times 5 \\times \\frac {1}{3}"
"= \\frac {20}{3}"
Comments
Leave a comment