Question #235665
For which rational numbers does the homogenous system
x+(λ-3)y=0
(λ-3)x+y=0
Have a non-trivial solution
1
Expert's answer
2021-09-15T03:42:15-0400

The co-efficient matrix for the given system is(1λ3λ31)For given system of linear equations to have a non-trivial solution, then its determinantbe 0.1λ3λ31=1(λ3)2=0=λ2+6λ8=0    λ=2 or λ=4\text{The co-efficient matrix for the given system is} \begin{pmatrix} 1 & \lambda - 3 \\ \lambda -3 & 1 \end{pmatrix}\\ \text{For given system of linear equations to have a non-trivial solution, then its determinant}\\ \text{be 0.}\\ \begin{vmatrix} 1 & \lambda - 3 \\ \lambda -3 & 1 \end{vmatrix}= 1-(\lambda -3)^2 =0\\ = -\lambda^2 + 6\lambda-8=0\\ \implies \text{$\lambda = -2$ or $\lambda=-4$}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS