1) The three vectors are coplanar if their scalar triple product is zero.
2) The three vectors are coplanar if they are linearly dependent.
(10.1)
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = ∣ 3 8 1 − 4 1 1 4 − 1 − 1 ∣ \vec u\cdot(\vec v\times \vec w)=\begin{vmatrix}
3 & 8 & 1 \\
-4 & 1 & 1 \\
4 & -1 & -1
\end{vmatrix} u ⋅ ( v × w ) = ∣ ∣ 3 − 4 4 8 1 − 1 1 1 − 1 ∣ ∣
= 3 ∣ 1 1 − 1 − 1 ∣ − 8 ∣ − 4 1 4 − 1 ∣ + 1 ∣ − 4 1 4 − 1 ∣ =3\begin{vmatrix}
1 & 1 \\
-1 & -1
\end{vmatrix}-8\begin{vmatrix}
-4 & 1 \\
4 & -1
\end{vmatrix}+1\begin{vmatrix}
-4 &1 \\
4 & -1
\end{vmatrix} = 3 ∣ ∣ 1 − 1 1 − 1 ∣ ∣ − 8 ∣ ∣ − 4 4 1 − 1 ∣ ∣ + 1 ∣ ∣ − 4 4 1 − 1 ∣ ∣
= 3 ( 0 ) − 8 ( 0 ) + 0 = 0 =3(0)-8(0)+0=0 = 3 ( 0 ) − 8 ( 0 ) + 0 = 0 The following vectors lie in U.
Since the vector u ⃗ , v ⃗ \vec u, \vec v u , v and − v ⃗ -\vec v − v are linearly dependent, they lie in U.
(10.2)
u ⃗ ⋅ ( v ⃗ × w ⃗ ) = ∣ 3 8 1 − 4 1 1 7 7 0 ∣ \vec u\cdot(\vec v\times \vec w)=\begin{vmatrix}
3 & 8 & 1 \\
-4 & 1 & 1 \\
7 & 7 & 0
\end{vmatrix} u ⋅ ( v × w ) = ∣ ∣ 3 − 4 7 8 1 7 1 1 0 ∣ ∣
= 3 ∣ 1 1 7 0 ∣ − 8 ∣ − 4 1 7 0 ∣ + 1 ∣ − 4 1 7 7 ∣ =3\begin{vmatrix}
1 & 1 \\
7 & 0
\end{vmatrix}-8\begin{vmatrix}
-4 & 1 \\
7 & 0
\end{vmatrix}+1\begin{vmatrix}
-4 &1 \\
7 & 7
\end{vmatrix} = 3 ∣ ∣ 1 7 1 0 ∣ ∣ − 8 ∣ ∣ − 4 7 1 0 ∣ ∣ + 1 ∣ ∣ − 4 7 1 7 ∣ ∣
= 3 ( − 7 ) − 8 ( − 7 ) + ( − 35 ) = 0 =3(-7)-8(-7)+(-35)=0 = 3 ( − 7 ) − 8 ( − 7 ) + ( − 35 ) = 0 The following vectors lie in U.
Since the vector u ⃗ , v ⃗ \vec u, \vec v u , v and u ⃗ − v ⃗ \vec u-\vec v u − v are linearly dependent, they lie in U.
Comments