What do you mean by positive form, negative form? Define these with example ( inner product space)
Positive form:
for any u∈Vu\isin Vu∈V, (u,u)≥0(u,u)\ge0(u,u)≥0
For example:
u=(1,2,3)u=(1,2,3)u=(1,2,3)
(u,u)=1+4+9=14>0(u,u)=1+4+9=14>0(u,u)=1+4+9=14>0
Negative form:
for any u∈Vu\isin Vu∈V, (u,u)≤0(u,u)\le0(u,u)≤0
u=(i,2i,3i)u=(i,2i,3i)u=(i,2i,3i)
(u,u)=−1−4−9=14<0(u,u)=-1-4-9=14<0(u,u)=−1−4−9=14<0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments