a. A x = b Ax=b A x = b is inconsistent (i.e., no solution exists) if and only if rank [ A ] < rank [ A ∣ b ] . \text{rank}[A]<\text{rank}[A|b]. rank [ A ] < rank [ A ∣ b ] .
b. A x = b Ax=b A x = b has an unique solution if and only if rank [ A ] = rank [ A ∣ b ] = n . \text{rank}[A]=\text{rank}[A|b]=n. rank [ A ] = rank [ A ∣ b ] = n .
c. A x = b Ax=b A x = b has infinitely many solutions if and only if rank [ A ] = rank [ A ∣ b ] < n . \text{rank}[A]=\text{rank}[A|b]<n. rank [ A ] = rank [ A ∣ b ] < n .
i.
A = [ 0 4 1 12 − 5 − 3 − 6 0 4 ] A=\begin{bmatrix}
0 & 4 & 1 \\
12 & -5 & -3 \\
-6 & 0 & 4
\end{bmatrix} A = ⎣ ⎡ 0 12 − 6 4 − 5 0 1 − 3 4 ⎦ ⎤ Swap rows 1and 2
[ 12 − 5 − 3 0 4 1 − 6 0 4 ] \begin{bmatrix}
12 & -5 & -3 \\
0 & 4 & 1 \\
-6 & 0 & 4
\end{bmatrix} ⎣ ⎡ 12 0 − 6 − 5 4 0 − 3 1 4 ⎦ ⎤ R 3 = R 3 + ( 1 / 2 ) R 1 R_3=R_3+(1/2)R_1 R 3 = R 3 + ( 1/2 ) R 1
[ 12 − 5 − 3 0 4 1 0 − 5 / 2 5 / 2 ] \begin{bmatrix}
12 & -5 & -3 \\
0 & 4 & 1 \\
0 & -5/2 & 5/2
\end{bmatrix} ⎣ ⎡ 12 0 0 − 5 4 − 5/2 − 3 1 5/2 ⎦ ⎤ R 3 = R 3 + ( 5 / 8 ) R 2 R_3=R_3+(5/8)R_2 R 3 = R 3 + ( 5/8 ) R 2
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.
Since rank [ A ] = rank [ A ∣ b ] = 3 = n , \text{rank}[A]=\text{rank}[A|b]=3=n, rank [ A ] = rank [ A ∣ b ] = 3 = n , then A x = b Ax=b A x = b has an unique solution.
ii.
A = [ 5 − 3 1 2 3 − 1 8 9 − 3 ] A=\begin{bmatrix}
5 & -3 & 1 \\
2 & 3 & -1 \\
8 & 9 & -3
\end{bmatrix} A = ⎣ ⎡ 5 2 8 − 3 3 9 1 − 1 − 3 ⎦ ⎤ R 1 = R 1 / 5 R_1=R_1/5 R 1 = R 1 /5
[ 1 − 3 / 5 1 / 5 2 3 − 1 8 9 − 3 ] \begin{bmatrix}
1 & -3/5 & 1/5 \\
2 & 3 & -1 \\
8 & 9 & -3
\end{bmatrix} ⎣ ⎡ 1 2 8 − 3/5 3 9 1/5 − 1 − 3 ⎦ ⎤ R 2 = R 2 − 2 R 1 R_2=R_2-2R_1 R 2 = R 2 − 2 R 1
[ 1 − 3 / 5 1 / 5 0 21 / 5 − 7 / 5 8 9 − 3 ] \begin{bmatrix}
1 & -3/5 & 1/5 \\
0 & 21/5 & -7/5 \\
8 & 9 & -3
\end{bmatrix} ⎣ ⎡ 1 0 8 − 3/5 21/5 9 1/5 − 7/5 − 3 ⎦ ⎤ R 3 = R 3 − 8 R 1 R_3=R_3-8R_1 R 3 = R 3 − 8 R 1
[ 1 − 3 / 5 1 / 5 0 21 / 5 − 7 / 5 0 69 / 5 − 23 / 5 ] \begin{bmatrix}
1 & -3/5 & 1/5 \\
0 & 21/5 & -7/5 \\
0 & 69/5 & -23/5
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3/5 21/5 69/5 1/5 − 7/5 − 23/5 ⎦ ⎤ R 2 = ( 5 / 21 ) R 2 R_2=(5/21)R_2 R 2 = ( 5/21 ) R 2
[ 1 − 3 / 5 1 / 5 0 1 − 1 / 3 0 69 / 5 − 23 / 5 ] \begin{bmatrix}
1 & -3/5 & 1/5 \\
0 & 1 & -1/3 \\
0 & 69/5 & -23/5
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3/5 1 69/5 1/5 − 1/3 − 23/5 ⎦ ⎤ R 1 = R 1 + ( 3 / 5 ) R 2 R_1=R_1+(3/5)R_2 R 1 = R 1 + ( 3/5 ) R 2
[ 1 0 0 0 1 − 1 / 3 0 69 / 5 − 23 / 5 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -1/3 \\
0 & 69/5 & -23/5
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 69/5 0 − 1/3 − 23/5 ⎦ ⎤ R 3 = R 3 − ( 69 / 5 ) R 2 R_3=R_3-(69/5)R_2 R 3 = R 3 − ( 69/5 ) R 2
[ 1 0 0 0 1 − 1 / 3 0 0 0 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & -1/3 \\
0 & 0 & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 − 1/3 0 ⎦ ⎤ The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
[ 5 − 3 1 7 2 3 − 1 0 8 9 − 3 2 ] \begin{bmatrix}
5 & -3 & 1 & & 7 \\
2 & 3 & -1 & & 0 \\
8 & 9 & -3 & & 2
\end{bmatrix} ⎣ ⎡ 5 2 8 − 3 3 9 1 − 1 − 3 7 0 2 ⎦ ⎤ R 1 = R 1 / 5 R_1=R_1/5 R 1 = R 1 /5
[ 1 − 3 / 5 1 / 5 7 / 5 2 3 − 1 0 8 9 − 3 2 ] \begin{bmatrix}
1 & -3/5 & 1/5 & & 7/5 \\
2 & 3 & -1 & & 0 \\
8 & 9 & -3 & & 2
\end{bmatrix} ⎣ ⎡ 1 2 8 − 3/5 3 9 1/5 − 1 − 3 7/5 0 2 ⎦ ⎤ R 2 = R 2 − 2 R 1 R_2=R_2-2R_1 R 2 = R 2 − 2 R 1
[ 1 − 3 / 5 1 / 5 7 / 5 0 21 / 5 − 7 / 5 − 14 / 5 8 9 − 3 2 ] \begin{bmatrix}
1 & -3/5 & 1/5 & & 7/5 \\
0 & 21/5 & -7/5 & & -14/5 \\
8 & 9 & -3 & & 2
\end{bmatrix} ⎣ ⎡ 1 0 8 − 3/5 21/5 9 1/5 − 7/5 − 3 7/5 − 14/5 2 ⎦ ⎤ R 3 = R 3 − 8 R 1 R_3=R_3-8R_1 R 3 = R 3 − 8 R 1
[ 1 − 3 / 5 1 / 5 7 / 5 0 21 / 5 − 7 / 5 − 14 / 5 0 69 / 5 − 23 / 5 − 46 / 5 ] \begin{bmatrix}
1 & -3/5 & 1/5 & & 7/5 \\
0 & 21/5 & -7/5 & & -14/5 \\
0 & 69/5 & -23/5 & & -46/5
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3/5 21/5 69/5 1/5 − 7/5 − 23/5 7/5 − 14/5 − 46/5 ⎦ ⎤ R 2 = ( 5 / 21 ) R 2 R_2=(5/21)R_2 R 2 = ( 5/21 ) R 2
[ 1 − 3 / 5 1 / 5 7 / 5 0 1 − 1 / 3 − 2 / 3 0 69 / 5 − 23 / 5 − 46 / 5 ] \begin{bmatrix}
1 & -3/5 & 1/5 & & 7/5 \\
0 & 1 & -1/3 & & -2/3 \\
0 & 69/5 & -23/5 & & -46/5
\end{bmatrix} ⎣ ⎡ 1 0 0 − 3/5 1 69/5 1/5 − 1/3 − 23/5 7/5 − 2/3 − 46/5 ⎦ ⎤ R 1 = R 1 + ( 3 / 5 ) R 2 R_1=R_1+(3/5)R_2 R 1 = R 1 + ( 3/5 ) R 2
[ 1 0 0 1 0 1 − 1 / 3 − 2 / 3 0 69 / 5 − 23 / 5 − 46 / 5 ] \begin{bmatrix}
1 & 0 & 0 & & 1 \\
0 & 1 & -1/3 & & -2/3 \\
0 & 69/5 & -23/5 & & -46/5
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 69/5 0 − 1/3 − 23/5 1 − 2/3 − 46/5 ⎦ ⎤ R 3 = R 3 − ( 69 / 5 ) R 2 R_3=R_3-(69/5)R_2 R 3 = R 3 − ( 69/5 ) R 2
[ 1 0 0 1 0 1 − 1 / 3 − 2 / 3 0 0 0 0 ] \begin{bmatrix}
1 & 0 & 0 & & 1 \\
0 & 1 & -1/3 & & -2/3 \\
0 & 0 & 0 & & 0
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 − 1/3 0 1 − 2/3 0 ⎦ ⎤ The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
Since rank [ A ] = rank [ A ∣ b ] = 2 < 3 = n , \text{rank}[A]=\text{rank}[A|b]=2<3=n, rank [ A ] = rank [ A ∣ b ] = 2 < 3 = n , then A x = b Ax=b A x = b has infinitely many solutions.
iii.
A = [ − 8 0 2 0 6 4 12 2 0 ] A=\begin{bmatrix}
-8 & 0 & 2 \\
0 & 6 & 4 \\
12 & 2 & 0
\end{bmatrix} A = ⎣ ⎡ − 8 0 12 0 6 2 2 4 0 ⎦ ⎤ R 1 = − R 1 / 8 R_1=-R_1/8 R 1 = − R 1 /8
[ 1 0 − 1 / 4 0 6 4 12 2 0 ] \begin{bmatrix}
1 & 0 & -1/4 \\
0 & 6 & 4 \\
12 & 2 & 0
\end{bmatrix} ⎣ ⎡ 1 0 12 0 6 2 − 1/4 4 0 ⎦ ⎤ R 3 = R 3 − 12 R 1 R_3=R_3-12R_1 R 3 = R 3 − 12 R 1
[ 1 0 − 1 / 4 0 6 4 0 2 3 ] \begin{bmatrix}
1 & 0 & -1/4 \\
0 & 6 & 4 \\
0 & 2 & 3
\end{bmatrix} ⎣ ⎡ 1 0 0 0 6 2 − 1/4 4 3 ⎦ ⎤ R 2 = R 2 / 6 R_2=R_2/6 R 2 = R 2 /6
[ 1 0 − 1 / 4 0 1 2 / 3 0 2 3 ] \begin{bmatrix}
1 & 0 & -1/4 \\
0 & 1 & 2/3 \\
0 & 2 & 3
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 2 − 1/4 2/3 3 ⎦ ⎤ R 3 = R 3 − 2 R 2 R_3=R_3-2R_2 R 3 = R 3 − 2 R 2
[ 1 0 − 1 / 4 0 1 2 / 3 0 0 5 / 3 ] \begin{bmatrix}
1 & 0 & -1/4 \\
0 & 1 & 2/3 \\
0 & 0 & 5/3
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 − 1/4 2/3 5/3 ⎦ ⎤ R 3 = ( 3 / 5 ) R 3 R_3=(3/5)R_3 R 3 = ( 3/5 ) R 3
[ 1 0 − 1 / 4 0 1 2 / 3 0 0 1 ] \begin{bmatrix}
1 & 0 & -1/4 \\
0 & 1 & 2/3 \\
0 & 0 & 1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 − 1/4 2/3 1 ⎦ ⎤ R 1 = R 1 + ( 1 / 4 ) R 3 R_1=R_1+(1/4)R_3 R 1 = R 1 + ( 1/4 ) R 3
[ 1 0 0 0 1 2 / 3 0 0 1 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 2/3 \\
0 & 0 & 1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 2/3 1 ⎦ ⎤ R 2 = R 2 − ( 2 / 3 ) R 3 R_2=R_2-(2/3)R_3 R 2 = R 2 − ( 2/3 ) R 3
[ 1 0 0 0 1 0 0 0 1 ] \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} ⎣ ⎡ 1 0 0 0 1 0 0 0 1 ⎦ ⎤
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.
Since rank [ A ] = rank [ A ∣ b ] = 3 = n , \text{rank}[A]=\text{rank}[A|b]=3=n, rank [ A ] = rank [ A ∣ b ] = 3 = n , then A x = b Ax=b A x = b has an unique solution.
Comments