Using the the concept of rank of the matrix find whether the following system of equations
are consistent or inconsistent,
i.
4y + z = 0
12x - 5y - 3z = 34
-6x + 4z = 8
ii.
5x - 3y + z = 7
2x + 3y - z = 0
8x + 9y - 3z = 2:
iii.
-8x + 2z = 1
6y + 4z = 3
12x + 2y = 2
a. "Ax=b" is inconsistent (i.e., no solution exists) if and only if "\\text{rank}[A]<\\text{rank}[A|b]."
b. "Ax=b" has an unique solution if and only if "\\text{rank}[A]=\\text{rank}[A|b]=n."
c. "Ax=b" has infinitely many solutions if and only if "\\text{rank}[A]=\\text{rank}[A|b]<n."
i.
Swap rows 1and 2
"R_3=R_3+(1\/2)R_1"
"\\begin{bmatrix}\n 12 & -5 & -3 \\\\\n 0 & 4 & 1 \\\\\n 0 & -5\/2 & 5\/2\n\\end{bmatrix}""R_3=R_3+(5\/8)R_2"
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.
Since "\\text{rank}[A]=\\text{rank}[A|b]=3=n," then "Ax=b" has an unique solution.
ii.
"R_1=R_1\/5"
"R_2=R_2-2R_1"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 \\\\\n 0 & 21\/5 & -7\/5 \\\\\n 8 & 9 & -3\n\\end{bmatrix}""R_3=R_3-8R_1"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 \\\\\n 0 & 21\/5 & -7\/5 \\\\\n 0 & 69\/5 & -23\/5\n\\end{bmatrix}""R_2=(5\/21)R_2"
"R_1=R_1+(3\/5)R_2"
"R_3=R_3-(69\/5)R_2"
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
"R_1=R_1\/5"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 & & 7\/5 \\\\\n 2 & 3 & -1 & & 0 \\\\\n 8 & 9 & -3 & & 2\n\\end{bmatrix}""R_2=R_2-2R_1"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 & & 7\/5 \\\\\n 0 & 21\/5 & -7\/5 & & -14\/5 \\\\\n 8 & 9 & -3 & & 2\n\\end{bmatrix}""R_3=R_3-8R_1"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 & & 7\/5 \\\\\n 0 & 21\/5 & -7\/5 & & -14\/5 \\\\\n 0 & 69\/5 & -23\/5 & & -46\/5\n\\end{bmatrix}""R_2=(5\/21)R_2"
"\\begin{bmatrix}\n 1 & -3\/5 & 1\/5 & & 7\/5 \\\\\n 0 & 1 & -1\/3 & & -2\/3 \\\\\n 0 & 69\/5 & -23\/5 & & -46\/5\n\\end{bmatrix}""R_1=R_1+(3\/5)R_2"
"\\begin{bmatrix}\n 1 & 0 & 0 & & 1 \\\\\n 0 & 1 & -1\/3 & & -2\/3 \\\\\n 0 & 69\/5 & -23\/5 & & -46\/5\n\\end{bmatrix}""R_3=R_3-(69\/5)R_2"
"\\begin{bmatrix}\n 1 & 0 & 0 & & 1 \\\\\n 0 & 1 & -1\/3 & & -2\/3 \\\\\n 0 & 0 & 0 & & 0\n\\end{bmatrix}"The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.
Since "\\text{rank}[A]=\\text{rank}[A|b]=2<3=n," then "Ax=b" has infinitely many solutions.
iii.
"R_1=-R_1\/8"
"\\begin{bmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 6 & 4 \\\\\n 12 & 2 & 0\n\\end{bmatrix}""R_3=R_3-12R_1"
"\\begin{bmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 6 & 4 \\\\\n 0 & 2 & 3\n\\end{bmatrix}""R_2=R_2\/6"
"\\begin{bmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 1 & 2\/3 \\\\\n 0 & 2 & 3\n\\end{bmatrix}""R_3=R_3-2R_2"
"\\begin{bmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 1 & 2\/3 \\\\\n 0 & 0 & 5\/3\n\\end{bmatrix}""R_3=(3\/5)R_3"
"\\begin{bmatrix}\n 1 & 0 & -1\/4 \\\\\n 0 & 1 & 2\/3 \\\\\n 0 & 0 & 1\n\\end{bmatrix}""R_1=R_1+(1\/4)R_3"
"\\begin{bmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 2\/3 \\\\\n 0 & 0 & 1\n\\end{bmatrix}""R_2=R_2-(2\/3)R_3"
The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.
Since "\\text{rank}[A]=\\text{rank}[A|b]=3=n," then "Ax=b" has an unique solution.
Comments
Leave a comment