Question #203666

Using the the concept of rank of the matrix find whether the following system of equations

are consistent or inconsistent,

i.

4y + z = 0

12x - 5y - 3z = 34

-6x + 4z = 8

ii.

5x - 3y + z = 7

2x + 3y - z = 0

8x + 9y - 3z = 2:

iii.

-8x + 2z = 1

6y + 4z = 3

12x + 2y = 2


1
Expert's answer
2021-06-07T14:18:30-0400


a. Ax=bAx=b is inconsistent (i.e., no solution exists) if and only if rank[A]<rank[Ab].\text{rank}[A]<\text{rank}[A|b].


b. Ax=bAx=b has an unique solution if and only if rank[A]=rank[Ab]=n.\text{rank}[A]=\text{rank}[A|b]=n.


c. Ax=bAx=b has infinitely many solutions if and only if rank[A]=rank[Ab]<n.\text{rank}[A]=\text{rank}[A|b]<n.


i.


A=[0411253604]A=\begin{bmatrix} 0 & 4 & 1 \\ 12 & -5 & -3 \\ -6 & 0 & 4 \end{bmatrix}

Swap rows 1and 2


[1253041604]\begin{bmatrix} 12 & -5 & -3 \\ 0 & 4 & 1 \\ -6 & 0 & 4 \end{bmatrix}

R3=R3+(1/2)R1R_3=R_3+(1/2)R_1

[125304105/25/2]\begin{bmatrix} 12 & -5 & -3 \\ 0 & 4 & 1 \\ 0 & -5/2 & 5/2 \end{bmatrix}

R3=R3+(5/8)R2R_3=R_3+(5/8)R_2


The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.


Since rank[A]=rank[Ab]=3=n,\text{rank}[A]=\text{rank}[A|b]=3=n, then Ax=bAx=b has an unique solution.


ii.


A=[531231893]A=\begin{bmatrix} 5 & -3 & 1 \\ 2 & 3 & -1 \\ 8 & 9 & -3 \end{bmatrix}

R1=R1/5R_1=R_1/5


[13/51/5231893]\begin{bmatrix} 1 & -3/5 & 1/5 \\ 2 & 3 & -1 \\ 8 & 9 & -3 \end{bmatrix}

R2=R22R1R_2=R_2-2R_1

[13/51/5021/57/5893]\begin{bmatrix} 1 & -3/5 & 1/5 \\ 0 & 21/5 & -7/5 \\ 8 & 9 & -3 \end{bmatrix}

R3=R38R1R_3=R_3-8R_1

[13/51/5021/57/5069/523/5]\begin{bmatrix} 1 & -3/5 & 1/5 \\ 0 & 21/5 & -7/5 \\ 0 & 69/5 & -23/5 \end{bmatrix}

R2=(5/21)R2R_2=(5/21)R_2


[13/51/5011/3069/523/5]\begin{bmatrix} 1 & -3/5 & 1/5 \\ 0 & 1 & -1/3 \\ 0 & 69/5 & -23/5 \end{bmatrix}

R1=R1+(3/5)R2R_1=R_1+(3/5)R_2


[100011/3069/523/5]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1/3 \\ 0 & 69/5 & -23/5 \end{bmatrix}

R3=R3(69/5)R2R_3=R_3-(69/5)R_2


[100011/3000]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1/3 \\ 0 & 0 & 0 \end{bmatrix}

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.




[531723108932]\begin{bmatrix} 5 & -3 & 1 & & 7 \\ 2 & 3 & -1 & & 0 \\ 8 & 9 & -3 & & 2 \end{bmatrix}

R1=R1/5R_1=R_1/5

[13/51/57/523108932]\begin{bmatrix} 1 & -3/5 & 1/5 & & 7/5 \\ 2 & 3 & -1 & & 0 \\ 8 & 9 & -3 & & 2 \end{bmatrix}

R2=R22R1R_2=R_2-2R_1

[13/51/57/5021/57/514/58932]\begin{bmatrix} 1 & -3/5 & 1/5 & & 7/5 \\ 0 & 21/5 & -7/5 & & -14/5 \\ 8 & 9 & -3 & & 2 \end{bmatrix}

R3=R38R1R_3=R_3-8R_1

[13/51/57/5021/57/514/5069/523/546/5]\begin{bmatrix} 1 & -3/5 & 1/5 & & 7/5 \\ 0 & 21/5 & -7/5 & & -14/5 \\ 0 & 69/5 & -23/5 & & -46/5 \end{bmatrix}

R2=(5/21)R2R_2=(5/21)R_2

[13/51/57/5011/32/3069/523/546/5]\begin{bmatrix} 1 & -3/5 & 1/5 & & 7/5 \\ 0 & 1 & -1/3 & & -2/3 \\ 0 & 69/5 & -23/5 & & -46/5 \end{bmatrix}

R1=R1+(3/5)R2R_1=R_1+(3/5)R_2

[1001011/32/3069/523/546/5]\begin{bmatrix} 1 & 0 & 0 & & 1 \\ 0 & 1 & -1/3 & & -2/3 \\ 0 & 69/5 & -23/5 & & -46/5 \end{bmatrix}

R3=R3(69/5)R2R_3=R_3-(69/5)R_2

[1001011/32/30000]\begin{bmatrix} 1 & 0 & 0 & & 1 \\ 0 & 1 & -1/3 & & -2/3 \\ 0 & 0 & 0 & & 0 \end{bmatrix}

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 2.

Since rank[A]=rank[Ab]=2<3=n,\text{rank}[A]=\text{rank}[A|b]=2<3=n, then Ax=bAx=b has infinitely many solutions.


iii.



A=[8020641220]A=\begin{bmatrix} -8 & 0 & 2 \\ 0 & 6 & 4 \\ 12 & 2 & 0 \end{bmatrix}

R1=R1/8R_1=-R_1/8

[101/40641220]\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 6 & 4 \\ 12 & 2 & 0 \end{bmatrix}

R3=R312R1R_3=R_3-12R_1

[101/4064023]\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 6 & 4 \\ 0 & 2 & 3 \end{bmatrix}

R2=R2/6R_2=R_2/6

[101/4012/3023]\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 2/3 \\ 0 & 2 & 3 \end{bmatrix}

R3=R32R2R_3=R_3-2R_2

[101/4012/3005/3]\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 2/3 \\ 0 & 0 & 5/3 \end{bmatrix}

R3=(3/5)R3R_3=(3/5)R_3

[101/4012/3001]\begin{bmatrix} 1 & 0 & -1/4 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{bmatrix}

R1=R1+(1/4)R3R_1=R_1+(1/4)R_3

[100012/3001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2/3 \\ 0 & 0 & 1 \end{bmatrix}

R2=R2(2/3)R3R_2=R_2-(2/3)R_3


[100010001]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}

The rank of a matrix is the number of nonzero rows in the reduced matrix, so the rank is 3.


Since rank[A]=rank[Ab]=3=n,\text{rank}[A]=\text{rank}[A|b]=3=n, then Ax=bAx=b has an unique solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS