Answer to Question #203548 in Linear Algebra for Rohan

Question #203548

How do we show that W= {(x,-3x,2x)|x€R} is a subspace of R³?Also find a basis for subspace U of R³ which satisfies R³=W⊕U?

1
Expert's answer
2021-06-08T07:32:32-0400

Let us show that W={(x,3x,2x)xR}W= \{(x,-3x,2x)|x\in\mathbb R\} is a subspace of R3\mathbb R^3. Let α,βR, (x,3x,2x),(y,3y,2y)W.\alpha, \beta\in\mathbb R,\ (x,-3x,2x), (y,-3y,2y)\in W. Then α(x,3x,2x)+β(y,3y,2y)=(αx,3αx,2αx)+(βy,3βy,2βy)=(αx+βy,3αx3βy,2αx+2βy)=(αx+βy,3(αx+βy),2(αx+βy))W.\alpha (x,-3x,2x)+\beta (y,-3y,2y)= (\alpha x,-3\alpha x,2\alpha x)+(\beta y,-3\beta y,2\beta y)= (\alpha x+\beta y,-3\alpha x-3\beta y,2\alpha x+2\beta y)= (\alpha x+\beta y,-3(\alpha x+\beta y),2(\alpha x+\beta y))\in W.

Therefore, W={(x,3x,2x)xR}W= \{(x,-3x,2x)|x\in\mathbb R\} is a subspace of R3\mathbb R^3. This subspace is of dimention 1 generated by w=(1,3,2).w=(1,-3,2).


Consider the vectors v=(0,2,3)v=(0,2,3) and u=(13,3,2).u=(-13,-3,2). Taking into account that for the dot products we have wv=06+6=0,wu=13+9+4=0, vu=6+6=0,w\cdot v=0-6+6=0, w\cdot u=-13+9+4=0,\ v\cdot u=-6+6=0, we conclude that the subspace U=v,uU=\langle v,u\rangle satisfies R3=WU\mathbb R^3=W⊕U, and UU is of dimention 2 with basis consisting of vectors vv and u.u.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment