Let us show that W={(x,−3x,2x)∣x∈R} is a subspace of R3. Let α,β∈R, (x,−3x,2x),(y,−3y,2y)∈W. Then α(x,−3x,2x)+β(y,−3y,2y)=(αx,−3αx,2αx)+(βy,−3βy,2βy)=(αx+βy,−3αx−3βy,2αx+2βy)=(αx+βy,−3(αx+βy),2(αx+βy))∈W.
Therefore, W={(x,−3x,2x)∣x∈R} is a subspace of R3. This subspace is of dimention 1 generated by w=(1,−3,2).
Consider the vectors v=(0,2,3) and u=(−13,−3,2). Taking into account that for the dot products we have w⋅v=0−6+6=0,w⋅u=−13+9+4=0, v⋅u=−6+6=0, we conclude that the subspace U=⟨v,u⟩ satisfies R3=W⊕U, and U is of dimention 2 with basis consisting of vectors v and u.
Comments
Leave a comment