Question #203386

Find the inverse of A = ( 1,3,0) ( 0,4,-6) ( -1,5,7) .


1
Expert's answer
2021-06-07T13:07:09-0400
A=(130046157)A=\begin{pmatrix} 1 & 3 & 0 \\ 0 & 4 & -6 \\ -1 & 5 & 7\\ \end{pmatrix}

Augment the matrix with the identity matrix:


(130100046010157001)\begin{pmatrix} 1 & 3 & 0 & & 1 & 0 & 0 \\ 0 & 4 & -6 & & 0 & 1 & 0 \\ -1 & 5 & 7 & & 0 & 0 & 1\\ \end{pmatrix}

R3=R3+R1R_3=R_3+R_1


(130100046010087101)\begin{pmatrix} 1 & 3 & 0 & & 1 & 0 & 0 \\ 0 & 4 & -6 & & 0 & 1 & 0 \\ 0 & 8 & 7 & & 1 & 0 & 1\\ \end{pmatrix}

R2=R2/4R_2=R_2/4


(130100013/201/40087101)\begin{pmatrix} 1 & 3 & 0 & & 1 & 0 & 0 \\ 0 & 1 & -3/2 & & 0 & 1/4 & 0 \\ 0 & 8 & 7 & & 1 & 0 & 1\\ \end{pmatrix}

R1=R13R2R_1=R_1-3R_2


(109/213/40013/201/40087101)\begin{pmatrix} 1 & 0 & 9/2 & & 1 & -3/4 & 0 \\ 0 & 1 & -3/2 & & 0 & 1/4 & 0 \\ 0 & 8 & 7 & & 1 & 0 & 1\\ \end{pmatrix}

R3=R38R2R_3=R_3-8R_2


(109/213/40013/201/400019121)\begin{pmatrix} 1 & 0 & 9/2 & & 1 & -3/4 & 0 \\ 0 & 1 & -3/2 & & 0 & 1/4 & 0 \\ 0 & 0 & 19 & & 1 & -2 & 1\\ \end{pmatrix}

R3=R3/19R_3=R_3/19


(109/213/40013/201/400011/192/191/19)\begin{pmatrix} 1 & 0 & 9/2 & & 1 & -3/4 & 0 \\ 0 & 1 & -3/2 & & 0 & 1/4 & 0 \\ 0 & 0 & 1 & & 1/19 & -2/19 & 1/19\\ \end{pmatrix}

R1=R1(9/2)R3R_1=R_1-(9/2)R_3


(10029/2821/769/38013/201/400011/192/191/19)\begin{pmatrix} 1 & 0 & 0 & & 29/28 & -21/76 & -9/38 \\ 0 & 1 & -3/2 & & 0 & 1/4 & 0 \\ 0 & 0 & 1 & & 1/19 & -2/19 & 1/19\\ \end{pmatrix}

R2=R2+(3/2)R3R_2=R_2+(3/2)R_3


(10029/3821/769/380103/387/763/380011/192/191/19)\begin{pmatrix} 1 & 0 & 0 & & 29/38 & -21/76 & -9/38 \\ 0 & 1 & 0 & & 3/38 & 7/76 & 3/38 \\ 0 & 0 & 1 & & 1/19 & -2/19 & 1/19\\ \end{pmatrix}

On the left is the identity matrix. On the right is the inverse matrix.




(130046157)(29/3821/769/383/387/763/381/192/191/19)\begin{pmatrix} 1 & 3 & 0 \\ 0 & 4 & -6 \\ -1 & 5 & 7\\ \end{pmatrix}\begin{pmatrix} 29/38 & -21/76 & -9/38 \\ 3/38 & 7/76 & 3/38 \\ 1/19 & -2/19 & 1/19\\ \end{pmatrix}


=((29+9+0)/38(21+210)/76(9+9+0)/38(0+1212)/38(0+28+48)/76(0+1212)/38(29+15+14)/38(21+3556)/76(9+15+14)/38)=\begin{pmatrix} (29+9+0)/38 & (-21+21-0)/76 &(-9+9+0)/38 \\ (-0+12-12)/38 & (-0+28+48)/76 & (-0+12-12)/38 \\ (-29+15+14)/38 & (21+35-56)/76 & (9+15+14)/38\\ \end{pmatrix}


=(100010001)=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\\ \end{pmatrix}

A1=(29/3821/769/383/387/763/381/192/191/19)A^{-1}=\begin{pmatrix} 29/38 & -21/76 & -9/38 \\ 3/38 & 7/76 & 3/38 \\ 1/19 & -2/19 & 1/19\\ \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS