Answer to Question #203386 in Linear Algebra for umme habiba sumi

Question #203386

Find the inverse of A = ( 1,3,0) ( 0,4,-6) ( -1,5,7) .


1
Expert's answer
2021-06-07T13:07:09-0400
"A=\\begin{pmatrix}\n 1 & 3 & 0 \\\\\n 0 & 4 & -6 \\\\\n -1 & 5 & 7\\\\\n\\end{pmatrix}"

Augment the matrix with the identity matrix:


"\\begin{pmatrix}\n 1 & 3 & 0 & & 1 & 0 & 0 \\\\\n 0 & 4 & -6 & & 0 & 1 & 0 \\\\\n -1 & 5 & 7 & & 0 & 0 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3+R_1"


"\\begin{pmatrix}\n 1 & 3 & 0 & & 1 & 0 & 0 \\\\\n 0 & 4 & -6 & & 0 & 1 & 0 \\\\\n 0 & 8 & 7 & & 1 & 0 & 1\\\\\n\\end{pmatrix}"

"R_2=R_2\/4"


"\\begin{pmatrix}\n 1 & 3 & 0 & & 1 & 0 & 0 \\\\\n 0 & 1 & -3\/2 & & 0 & 1\/4 & 0 \\\\\n 0 & 8 & 7 & & 1 & 0 & 1\\\\\n\\end{pmatrix}"

"R_1=R_1-3R_2"


"\\begin{pmatrix}\n 1 & 0 & 9\/2 & & 1 & -3\/4 & 0 \\\\\n 0 & 1 & -3\/2 & & 0 & 1\/4 & 0 \\\\\n 0 & 8 & 7 & & 1 & 0 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3-8R_2"


"\\begin{pmatrix}\n 1 & 0 & 9\/2 & & 1 & -3\/4 & 0 \\\\\n 0 & 1 & -3\/2 & & 0 & 1\/4 & 0 \\\\\n 0 & 0 & 19 & & 1 & -2 & 1\\\\\n\\end{pmatrix}"

"R_3=R_3\/19"


"\\begin{pmatrix}\n 1 & 0 & 9\/2 & & 1 & -3\/4 & 0 \\\\\n 0 & 1 & -3\/2 & & 0 & 1\/4 & 0 \\\\\n 0 & 0 & 1 & & 1\/19 & -2\/19 & 1\/19\\\\\n\\end{pmatrix}"

"R_1=R_1-(9\/2)R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & 29\/28 & -21\/76 & -9\/38 \\\\\n 0 & 1 & -3\/2 & & 0 & 1\/4 & 0 \\\\\n 0 & 0 & 1 & & 1\/19 & -2\/19 & 1\/19\\\\\n\\end{pmatrix}"

"R_2=R_2+(3\/2)R_3"


"\\begin{pmatrix}\n 1 & 0 & 0 & & 29\/38 & -21\/76 & -9\/38 \\\\\n 0 & 1 & 0 & & 3\/38 & 7\/76 & 3\/38 \\\\\n 0 & 0 & 1 & & 1\/19 & -2\/19 & 1\/19\\\\\n\\end{pmatrix}"

On the left is the identity matrix. On the right is the inverse matrix.




"\\begin{pmatrix}\n 1 & 3 & 0 \\\\\n 0 & 4 & -6 \\\\\n -1 & 5 & 7\\\\\n\\end{pmatrix}\\begin{pmatrix}\n 29\/38 & -21\/76 & -9\/38 \\\\\n 3\/38 & 7\/76 & 3\/38 \\\\\n 1\/19 & -2\/19 & 1\/19\\\\\n\\end{pmatrix}"


"=\\begin{pmatrix}\n (29+9+0)\/38 & (-21+21-0)\/76 &(-9+9+0)\/38 \\\\\n (-0+12-12)\/38 & (-0+28+48)\/76 & (-0+12-12)\/38 \\\\\n (-29+15+14)\/38 & (21+35-56)\/76 & (9+15+14)\/38\\\\\n\\end{pmatrix}"


"=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 0 \\\\\n 0 & 0 & 1\\\\\n\\end{pmatrix}"

"A^{-1}=\\begin{pmatrix}\n 29\/38 & -21\/76 & -9\/38 \\\\\n 3\/38 & 7\/76 & 3\/38 \\\\\n 1\/19 & -2\/19 & 1\/19\\\\\n\\end{pmatrix}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS