Prove that there does not exist a linear map T : R5 ! R5
such that range T = null T.
By the rank-nullity theorem we have "\\dim\\operatorname{Im}T+\\dim\\ker T=\\dim\\mathbb R^5=5"
If "\\operatorname{Im}T=\\ker T", then "\\dim\\operatorname{Im}T=\\dim\\ker T=\\frac{5}{2}". It is impossible, so "\\operatorname{Im}T\\neq\\ker T"
Comments
Leave a comment