1. Let
c1u1+c2u2+c3u3=0
Then
3c1+2c2+c3=0
4c1−c2+6c3=0
3c2−8c3=0
c1+5c2−2c3=0
⎝⎛34012−13516−8−20000⎠⎞ R1=3R1
⎝⎛14012/3−1351/36−8−20000⎠⎞ R2=R2−4R1
⎝⎛10012/3−11/3351/314/3−8−20000⎠⎞ R4=R4−R1
⎝⎛10002/3−11/3313/31/314/3−8−7/30000⎠⎞ R2=−113R2
⎝⎛10002/31313/31/3−14/11−8−7/30000⎠⎞ R1=R1−32R2
⎝⎛100001313/313/11−14/11−8−7/30000⎠⎞ R3=R3−3R2
⎝⎛100001013/313/11−14/11−46/11−7/30000⎠⎞ R4=R4−313R2
⎝⎛1000010013/11−14/11−46/1135/110000⎠⎞
R3=−4611R3
⎝⎛1000010013/11−14/11135/110000⎠⎞ R1=R1−1113R3
⎝⎛100001000−14/11135/110000⎠⎞
R2=R2+1114R3
⎝⎛1000010000135/110000⎠⎞ R4=R4−1135R3
⎝⎛1000010000100000⎠⎞ c1=c2=c3=0
The vectors are linear independent (L.I.).
2. Let
c1v1+c2v2+c3v3+c4v4=0
Then
2c1+7c4=0
2c1+8c4=0
2c1+9c4=0
2c1+c3=0⎝⎛22220000000178900000⎠⎞ R1=2R1
⎝⎛1222000000017/28900000⎠⎞ R2=R2−2R1
⎝⎛1022000000017/21900000⎠⎞ R3=R3−2R1
⎝⎛1002000000017/21200000⎠⎞ R4=R4−2R1
⎝⎛1000000000017/212−70000⎠⎞ Swap rows 2 and 4
⎝⎛1000000001007/2−7210000⎠⎞ R3=2R3
⎝⎛1000000001007/2−7110000⎠⎞
R1=R1−27R3
⎝⎛1000000001000−7110000⎠⎞ R2=R2+7R3
⎝⎛10000000010000110000⎠⎞ R4=R4−R3
⎝⎛10000000010000100000⎠⎞
c1=c3=c4=0,c2∈R
The vectors are linear dependent (L.D.).
3. Let
c1w1+c2w2+c3w3=0
Then
6c1+2c2−4c3=0
2c2−4c3=0
−c1+5c2−4c3=0
3c1−4c3=0⎝⎛60−132250−4−4−4−40000⎠⎞ R1=6R1
⎝⎛10−131/3250−2/3−4−4−40000⎠⎞ R3=R3+R1
⎝⎛10031/3216/30−2/3−4−14/3−40000⎠⎞ R4=R4−3R1
⎝⎛10001/3216/3−1−2/3−4−14/3−20000⎠⎞ R2=2R2
⎝⎛10001/3116/3−1−2/3−2−14/3−20000⎠⎞ R1=R1−3R2
⎝⎛10000116/3−10−2−14/3−20000⎠⎞ R3=R3−316R2
⎝⎛1000010−10−26−20000⎠⎞ R4=R4+R2
⎝⎛100001000−26−40000⎠⎞
R3=6R3
⎝⎛100001000−21−40000⎠⎞R2=R2+2R3
⎝⎛10000100001−40000⎠⎞ R4=R4+4R3
⎝⎛1000010000100000⎠⎞ c1=c2=c3=0
The vectors are linear independent (L.I.).
Comments