Show that the given set of vectors are L.I or L.D. (i) u = [(3; 4; 0; 1); (2; -1; 3; 5); (1; 6; -8; -2)].
(ii) v = [(2; 0; 0; 7); (2; 0; 0; 8); (2; 0; 0; 9); (2; 0; 1; 0)] (iii) w = [(6; 0; -1; 3); (2; 2; 5; 0); (-4; -4; -4; -4)].
1. Let
Then
"4c_1-c_2+6c_3=0"
"3c_2-8c_3=0"
"c_1+5c_2-2c_3=0"
"\\begin{pmatrix}\n 3 & 2 & 1 & 0\\\\\n 4 & -1 & 6 & 0 \\\\\n 0 & 3 & -8& 0 \\\\\n 1 & 5 & -2 & 0 \\\\\n\\end{pmatrix}"
"R_1=\\dfrac{R_1}{3}"
"R_2=R_2-4R_1"
"R_4=R_4-R_1"
"R_2=-\\dfrac{3}{11}R_2"
"R_1=R_1-\\dfrac{2R_2}{3}"
"R_3=R_3-3R_2"
"R_4=R_4-\\dfrac{13R_2}{3}"
"R_3=-\\dfrac{11R_3}{46}"
"R_1=R_1-\\dfrac{13R_3}{11}"
"R_2=R_2+\\dfrac{14R_3}{11}"
"R_4=R_4-\\dfrac{35R_3}{11}"
"c_1=c_2=c_3=0"
The vectors are linear independent (L.I.).
2. Let
Then
"2c_1+8c_4=0"
"2c_1+9c_4=0"
"2c_1+c_3=0""\\begin{pmatrix}\n 2 & 0 & 0 & 7 & 0\\\\\n 2 & 0 & 0 & 8 & 0\\\\\n 2 & 0 & 0 & 9 & 0 \\\\\n 2 & 0 & 1 & 0 & 0 \\\\\n\\end{pmatrix}"
"R_1=\\dfrac{R_1}{2}"
"R_2=R_2-2R_1"
"R_3=R_3-2R_1"
"R_4=R_4-2R_1"
Swap rows 2 and 4
"R_3=\\dfrac{R_3}{2}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 7\/2 & 0\\\\\n 0 & 0 & 1 & -7 & 0\\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n\\end{pmatrix}"
"R_1=R_1-\\dfrac{7R_3}{2}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 & 0\\\\\n 0 & 0 & 1 & -7 & 0\\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n\\end{pmatrix}"
"R_2=R_2+7R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 & 0\\\\\n 0 & 0 & 1 & 0 & 0\\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n\\end{pmatrix}"
"R_4=R_4-R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0 & 0\\\\\n 0 & 0 & 1 & 0 & 0\\\\\n 0 & 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 0 & 0 \\\\\n\\end{pmatrix}"
"c_1=c_3=c_4=0, c_2\\in \\R"
The vectors are linear dependent (L.D.).
3. Let
Then
"2c_2-4c_3=0"
"-c_1+5c_2-4c_3=0"
"3c_1-4c_3=0""\\begin{pmatrix}\n 6 & 2 & -4 & 0\\\\\n 0 & 2 & -4 & 0 \\\\\n -1 & 5 & -4& 0 \\\\\n 3 & 0 & -4 & 0 \\\\\n\\end{pmatrix}"
"R_1=\\dfrac{R_1}{6}"
"\\begin{pmatrix}\n 1 & 1\/3 & -2\/3 & 0\\\\\n 0 & 2 & -4 & 0 \\\\\n -1 & 5 & -4& 0 \\\\\n 3 & 0 & -4 & 0 \\\\\n\\end{pmatrix}""R_3=R_3+R_1"
"\\begin{pmatrix}\n 1 & 1\/3 & -2\/3& 0\\\\\n 0 & 2 & -4 & 0 \\\\\n 0 & 16\/3 & -14\/3 & 0 \\\\\n 3 & 0 & -4 & 0 \\\\\n\\end{pmatrix}""R_4=R_4-3R_1"
"\\begin{pmatrix}\n 1 & 1\/3 & -2\/3& 0\\\\\n 0 & 2 & -4 & 0 \\\\\n 0 &16\/3 & -14\/3 & 0 \\\\\n 0 & -1 & -2 & 0 \\\\\n\\end{pmatrix}""R_2=\\dfrac{R_2}{2}"
"\\begin{pmatrix}\n 1 & 1\/3 & -2\/3& 0\\\\\n 0 & 1 & -2 & 0 \\\\\n 0 &16\/3 & -14\/3 & 0 \\\\\n 0 & -1 & -2 & 0 \\\\\n\\end{pmatrix}""R_1=R_1-\\dfrac{R_2}{3}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & -2 & 0 \\\\\n 0 &16\/3 & -14\/3 & 0 \\\\\n 0 & -1 & -2 & 0 \\\\\n\\end{pmatrix}""R_3=R_3-\\dfrac{16R_2}{3}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & -2 & 0 \\\\\n 0 & 0 & 6 & 0 \\\\\n 0 & -1 & -2 & 0 \\\\\n\\end{pmatrix}""R_4=R_4+R_2"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & -2 & 0 \\\\\n 0 & 0 & 6 & 0 \\\\\n 0 & 0 & -4 & 0 \\\\\n\\end{pmatrix}""R_3=\\dfrac{R_3}{6}"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & -2 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & -4 & 0 \\\\\n\\end{pmatrix}""R_2=R_2+2R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & -4 & 0 \\\\\n\\end{pmatrix}""R_4=R_4+4R_3"
"\\begin{pmatrix}\n 1 & 0 & 0 & 0\\\\\n 0 & 1 & 0 & 0 \\\\\n 0 & 0 & 1 & 0 \\\\\n 0 & 0 & 0 & 0 \\\\\n\\end{pmatrix}""c_1=c_2=c_3=0"
The vectors are linear independent (L.I.).
Comments
Leave a comment