Answer to Question #201446 in Linear Algebra for Rebecca

Question #201446

a. LCompute the product AB for

A = 0 4 0 2 3 1 3 0 1 and B = 1 0 3 1 1 5 2 3 -1

b.) Use your answer in a.) to evaluate det(AB) and compare it to det(A) det(B)

c.) Determine whether or not if det(A+B) is related to det(A) + det(B).


1
Expert's answer
2021-06-01T17:32:46-0400

(a)


"AB=\\begin{pmatrix}\n 0 & 4 & 0 \\\\\n 2 & 3 & 1 \\\\\n3 & 0 &1\n\\end{pmatrix}\\cdot\\begin{pmatrix}\n1 & 0 & 3 \\\\\n1 & 1 & 5 \\\\\n2 & 3 & -1\n\\end{pmatrix}"


"=\\begin{pmatrix}\n4 & 4 & 20 \\\\\n7 & 6 & 20 \\\\\n5 & 3 &8\n\\end{pmatrix}"

(b)


"\\det(AB)=\\begin{vmatrix}\n4 & 4 & 20 \\\\\n7 & 6 & 20 \\\\\n5 & 3 &8\n\\end{vmatrix}"

"=4\\begin{vmatrix}\n 6 & 20 \\\\\n 3 & 8\n\\end{vmatrix}-4\\begin{vmatrix}\n 7 & 20 \\\\\n 5 & 8\n\\end{vmatrix}+20\\begin{vmatrix}\n 7 & 6 \\\\\n 5 & 3\n\\end{vmatrix}"


"=4(48-60)-4(56-100)+20(21-30)=-52"



"\\det(A)=\\begin{vmatrix}\n 0 & 4 & 0 \\\\\n 2 & 3 & 1 \\\\\n3 & 0 &1\n\\end{vmatrix}"

"=0\\begin{vmatrix}\n 3 & 1 \\\\\n 0 & 1\n\\end{vmatrix}-4\\begin{vmatrix}\n 2 & 1 \\\\\n 3 & 1\n\\end{vmatrix}+0\\begin{vmatrix}\n 2 & 3 \\\\\n 3 & 0\n\\end{vmatrix}"


"=0-4(2-3)+0=4"





"\\det(B)=\\begin{vmatrix}\n1 & 0 & 3 \\\\\n1 & 1 & 5 \\\\\n2 & 3 & -1\n\\end{vmatrix}"

"=1\\begin{vmatrix}\n 1 & 5 \\\\\n 3 & -1\n\\end{vmatrix}-0\\begin{vmatrix}\n 1 & 5 \\\\\n 2 & -1\n\\end{vmatrix}+3\\begin{vmatrix}\n 1 & 1 \\\\\n 2 & 3\n\\end{vmatrix}"


"=1(-1-15)-0+3(3-2)=-13"


"\\det(AB)=-52=\\det(A)\\det(B)"


(c)


"A+B=\\begin{pmatrix}\n 0 & 4 & 0 \\\\\n 2 & 3 & 1 \\\\\n3 & 0 &1\n\\end{pmatrix}+\\begin{pmatrix}\n1 & 0 & 3 \\\\\n1 & 1 & 5 \\\\\n2 & 3 & -1\n\\end{pmatrix}"

"=\\begin{pmatrix}\n1 & 4 & 3 \\\\\n3 & 4 & 6 \\\\\n5 & 3 & 0\n\\end{pmatrix}"



"\\det(A+B)=\\begin{vmatrix}\n 1 & 4 & 3 \\\\\n 3 & 4 & 6 \\\\\n5 & 3 & 0\n\\end{vmatrix}"

"=1\\begin{vmatrix}\n 4 & 6 \\\\\n 3 & 0\n\\end{vmatrix}-4\\begin{vmatrix}\n 3 & 6 \\\\\n 5 & 0\n\\end{vmatrix}+3\\begin{vmatrix}\n 3 & 4 \\\\\n 5 & 3\n\\end{vmatrix}"



"=-18-4(-30)+3(9-20)=69"


"\\det(A+B)\\not=\\det(A)+\\det(B)"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS