Question #200621

(9.1)Determine for which value (s) of k will the matrix below be non-singular.


2-k -3

A= 2 k+1


(9.2)Determine for which value (s) of k will the matrix below be non-singular.


2 2 1

A = 3 1 3

1 3 k


1
Expert's answer
2021-06-02T18:04:00-0400

Solution:

(9.1):

A=[2k32k+1]A=\begin{bmatrix}2-k&-3\\ 2&k+1\end{bmatrix}

A is non-singular when A0|A|\ne0

2k32k+10(2k)(k+1)(3)(2)0k2+k+2+60k2k80\begin{vmatrix}2-k&-3\\ 2&k+1\end{vmatrix}\ne0 \\ \Rightarrow(2-k)(k+1)-(-3)(2)\ne0 \\ \Rightarrow-k^2+k+2+6\ne0 \\ \Rightarrow k^2-k-8\ne0

Solving by quadratic formula,

k1+332,k1332\Rightarrow k\ne\frac{1+\sqrt{33}}{2},\:k\ne\frac{1-\sqrt{33}}{2}

Thus, A is non-singular for all values of k except k=1+332,k=1332k=\frac{1+\sqrt{33}}{2},\:k=\frac{1-\sqrt{33}}{2}

(9.2):

A=[22131313k]A=\begin{bmatrix}2&2&1\\ 3&1&3\\ 1&3&k\end{bmatrix}

A is non-singular when A0|A|\ne0

22131313k02(k9)2(3k3)+1(91)02k186k+6+804k4k1\Rightarrow \begin{vmatrix}2&2&1\\ 3&1&3\\ 1&3&k\end{vmatrix}\ne0 \\ \Rightarrow 2(k-9)-2(3k-3)+1(9-1)\ne0 \\ \Rightarrow 2k-18-6k+6+8\ne0 \\ \Rightarrow -4k\ne4 \\\Rightarrow k\ne-1

Thus, A is non-singular for all values of k except k=1k=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS