(9.1)Determine for which value (s) of k will the matrix below be non-singular.
2-k -3
A= 2 k+1
(9.2)Determine for which value (s) of k will the matrix below be non-singular.
2 2 1
A = 3 1 3
1 3 k
Solution:
(9.1):
"A=\\begin{bmatrix}2-k&-3\\\\ 2&k+1\\end{bmatrix}"
A is non-singular when "|A|\\ne0"
"\\begin{vmatrix}2-k&-3\\\\ 2&k+1\\end{vmatrix}\\ne0\n\\\\ \\Rightarrow(2-k)(k+1)-(-3)(2)\\ne0\n\\\\ \\Rightarrow-k^2+k+2+6\\ne0\n\\\\ \\Rightarrow k^2-k-8\\ne0"
Solving by quadratic formula,
"\\Rightarrow k\\ne\\frac{1+\\sqrt{33}}{2},\\:k\\ne\\frac{1-\\sqrt{33}}{2}"
Thus, A is non-singular for all values of k except "k=\\frac{1+\\sqrt{33}}{2},\\:k=\\frac{1-\\sqrt{33}}{2}"
(9.2):
"A=\\begin{bmatrix}2&2&1\\\\ 3&1&3\\\\ 1&3&k\\end{bmatrix}"
A is non-singular when "|A|\\ne0"
"\\Rightarrow \\begin{vmatrix}2&2&1\\\\ 3&1&3\\\\ 1&3&k\\end{vmatrix}\\ne0\n\\\\ \\Rightarrow 2(k-9)-2(3k-3)+1(9-1)\\ne0\n\\\\ \\Rightarrow 2k-18-6k+6+8\\ne0\n\\\\ \\Rightarrow -4k\\ne4\n\\\\\\Rightarrow k\\ne-1"
Thus, A is non-singular for all values of k except "k=-1"
Comments
Leave a comment