Answer to Question #200621 in Linear Algebra for Mpopo

Question #200621

(9.1)Determine for which value (s) of k will the matrix below be non-singular.


2-k -3

A= 2 k+1


(9.2)Determine for which value (s) of k will the matrix below be non-singular.


2 2 1

A = 3 1 3

1 3 k


1
Expert's answer
2021-06-02T18:04:00-0400

Solution:

(9.1):

"A=\\begin{bmatrix}2-k&-3\\\\ 2&k+1\\end{bmatrix}"

A is non-singular when "|A|\\ne0"

"\\begin{vmatrix}2-k&-3\\\\ 2&k+1\\end{vmatrix}\\ne0\n\\\\ \\Rightarrow(2-k)(k+1)-(-3)(2)\\ne0\n\\\\ \\Rightarrow-k^2+k+2+6\\ne0\n\\\\ \\Rightarrow k^2-k-8\\ne0"

Solving by quadratic formula,

"\\Rightarrow k\\ne\\frac{1+\\sqrt{33}}{2},\\:k\\ne\\frac{1-\\sqrt{33}}{2}"

Thus, A is non-singular for all values of k except "k=\\frac{1+\\sqrt{33}}{2},\\:k=\\frac{1-\\sqrt{33}}{2}"

(9.2):

"A=\\begin{bmatrix}2&2&1\\\\ 3&1&3\\\\ 1&3&k\\end{bmatrix}"

A is non-singular when "|A|\\ne0"

"\\Rightarrow \\begin{vmatrix}2&2&1\\\\ 3&1&3\\\\ 1&3&k\\end{vmatrix}\\ne0\n\\\\ \\Rightarrow 2(k-9)-2(3k-3)+1(9-1)\\ne0\n\\\\ \\Rightarrow 2k-18-6k+6+8\\ne0\n\\\\ \\Rightarrow -4k\\ne4\n\\\\\\Rightarrow k\\ne-1"

Thus, A is non-singular for all values of k except "k=-1"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS