Show that the matrix [ 4 6 6 1 −1 3 2 −5 −2 ] is not diagonalizable
Start from forming a new matrix by subtracting "\\lambda" from the diagonal entries of the given matrix:
"\\begin{vmatrix}\n 4-\\lambda & 6 & 6 \\\\\n 1 & -1-\\lambda & 3 \\\\\n2 & -5 & -2-\\lambda \\\\\n\\end{vmatrix}"
"=(4-\\lambda)\\begin{vmatrix}\n -1-\\lambda & 3 \\\\\n -5 & -2-\\lambda\n\\end{vmatrix}-6\\begin{vmatrix}\n 1 & 3 \\\\\n 2 & -2-\\lambda\n\\end{vmatrix}"
"+6\\begin{vmatrix}\n 1 & -1-\\lambda \\\\\n 2 & -5\n\\end{vmatrix}"
"+6(2+\\lambda)+36-30+12(1+\\lambda)"
"=8+12\\lambda+4\\lambda^2-2\\lambda-3\\lambda^2-\\lambda^3+60-15\\lambda"
"+12+6\\lambda+6+12+12\\lambda"
"=-\\lambda^3+\\lambda^2+13\\lambda+98"
Solve the equation
Only approximate roots can be found.
The roots are
"\\lambda_1\\approx5.9513233156912"
"\\lambda_2\\approx\u22122.4756616578456+3.21527996418223i"
"\\lambda_3\\approx\u22122.4756616578456-3.21527996418223i"
Since there are complex roots, the matrix is not diagonalizable.
Comments
Leave a comment