Question #202600

Evaluate the following system of equation by Gaussian Elimination method

x1+5x2+2x3=9

x1+x2+7x3=6

-3x2+4x3=-2



1
Expert's answer
2021-06-03T17:01:50-0400

Augmented matrix


A=(152  9117  6034  2)A=\begin{pmatrix} 1 & 5 & 2 & \ \ 9\\ 1 & 1 & 7 & \ \ 6\\ 0 & -3 & 4 & \ \ -2\\ \end{pmatrix}

R2=R2R1R_2=R_2-R_1


(152  9045  3034  2)\begin{pmatrix} 1 & 5 & 2 & \ \ 9\\ 0 & -4 & 5 & \ \ -3\\ 0 & -3 & 4 & \ \ -2\\ \end{pmatrix}

R2=R24R_2=-\dfrac{R_2}{4}


(152  9015/4  3/4034  2)\begin{pmatrix} 1 & 5 & 2 & \ \ 9\\ 0 & 1 & -5/4 & \ \ 3/4\\ 0 & -3 & 4 & \ \ -2\\ \end{pmatrix}

R1=R15R2R_1=R_1-5R_2


(1033/4  21/4015/4  3/4034  2)\begin{pmatrix} 1 & 0 & 33/4 & \ \ 21/4\\ 0 & 1 & -5/4 & \ \ 3/4\\ 0 & -3 & 4 & \ \ -2\\ \end{pmatrix}

R3=R3+3R2R_3=R_3+3R_2


(1033/4  21/4015/4  3/4001/4  1/4)\begin{pmatrix} 1 & 0 & 33/4 & \ \ 21/4\\ 0 & 1 & -5/4 & \ \ 3/4\\ 0 & 0 & 1/4 & \ \ 1/4\\ \end{pmatrix}

R3=4R3R_3=4R_3


(1033/4  21/4015/4  3/4001  1)\begin{pmatrix} 1 & 0 & 33/4 & \ \ 21/4\\ 0 & 1 & -5/4 & \ \ 3/4\\ 0 & 0 & 1 & \ \ 1\\ \end{pmatrix}

R1=R133R34R_1=R_1-\dfrac{33R_3}{4}


(100  3015/4  3/4001  1)\begin{pmatrix} 1 & 0 & 0 & \ \ -3\\ 0 & 1 & -5/4 & \ \ 3/4\\ 0 & 0 & 1 & \ \ 1\\ \end{pmatrix}

R2=R2+5R34R_2=R_2+\dfrac{5R_3}{4}


(100  3010  2001  1)\begin{pmatrix} 1 & 0 & 0 & \ \ -3\\ 0 & 1 & 0 & \ \ 2\\ 0 & 0 & 1 & \ \ 1\\ \end{pmatrix}


x1=3,x2=2,x3=1x_1=-3, x_2=2, x_3=1

(3,2,1)(-3,2,1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS