Question #203407

Given the system of equations 2 3 2 11 3 2 3 7 4 4 14 x y z x y z x y z + − = − − + = − + = , find the values of x, y, and z using matrix inversion. 


1
Expert's answer
2021-06-07T17:07:00-0400
2x+3y2z=112x+3y-2z=11

3x2y+3z=7-3x-2y+3z=7

4x4y+z=144x-4y+z=14

A=(232323441)A=\begin{pmatrix} 2 & 3 & -2 \\ -3& -2 & 3 \\ 4 & -4 & 1\\ \end{pmatrix}


Augment the matrix with the identity matrix:


(232100323010441001)\begin{pmatrix} 2 & 3 & -2 & & 1 & 0 & 0 \\ -3 & -2 & 3 & & 0 & 1 & 0 \\ 4 & -4 & 1 & & 0 & 0 & 1\\ \end{pmatrix}

R1=R1/2R_1=R_1/2

(13/211/200323010441001)\begin{pmatrix} 1 & 3/2 & -1 & & 1/2 & 0 & 0 \\ -3 & -2 & 3 & & 0 & 1 & 0 \\ 4 & -4 & 1 & & 0 & 0 & 1\\ \end{pmatrix}

R2=R2+3R1R_2=R_2+3R_1

(13/211/20005/203/210441001)\begin{pmatrix} 1 & 3/2 & -1 & & 1/2 & 0 & 0 \\ 0 & 5/2 & 0 & & 3/2 & 1 & 0 \\ 4 & -4 & 1 & & 0 & 0 & 1\\ \end{pmatrix}

R3=R34R1R_3=R_3-4R_1

(13/211/20005/203/2100105201)\begin{pmatrix} 1 & 3/2 & -1 & & 1/2 & 0 & 0 \\ 0 & 5/2 & 0 & & 3/2 & 1 & 0 \\ 0 & -10 & 5 & & -2 & 0 & 1\\ \end{pmatrix}

R2=(2/5)R2R_2=(2/5)R_2

(13/211/2000103/52/500105201)\begin{pmatrix} 1 & 3/2 & -1 & & 1/2 & 0 & 0 \\ 0 & 1 & 0 & & 3/5 & 2/5 & 0 \\ 0 & -10 & 5 & & -2 & 0 & 1\\ \end{pmatrix}

R1=R1(3/2)R2R_1=R_1-(3/2)R_2

(1012/53/500103/52/500105201)\begin{pmatrix} 1 & 0 & -1 & & -2/5 & -3/5 & 0 \\ 0 & 1 & 0 & & 3/5 & 2/5 & 0 \\ 0 & -10 & 5 & & -2 & 0 & 1\\ \end{pmatrix}

R3=R3+10R2R_3=R_3+10R_2

(1012/53/500103/52/50005441)\begin{pmatrix} 1 & 0 & -1 & & -2/5 & -3/5 & 0 \\ 0 & 1 & 0 & & 3/5 & 2/5 & 0 \\ 0 & 0 & 5 & &4 & 4 & 1\\ \end{pmatrix}

R3=R3/5R_3=R_3/5

(1012/53/500103/52/500014/54/51/5)\begin{pmatrix} 1 & 0 & -1 & & -2/5 & -3/5 & 0 \\ 0 & 1 & 0 & & 3/5 & 2/5 & 0 \\ 0 & 0 & 1 & & 4/5 & 4/5 & 1/5\\ \end{pmatrix}

R1=R1+R3R_1=R_1+R_3

(1002/51/51/50103/52/500014/54/51/5)\begin{pmatrix} 1 & 0 & 0 & & 2/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & & 3/5 & 2/5 & 0 \\ 0 & 0 & 1 & & 4/5 & 4/5 & 1/5\\ \end{pmatrix}


On the left is the identity matrix. On the right is the inverse matrix.



A1=(2/51/51/53/52/504/54/51/5)A^{-1}=\begin{pmatrix} 2/5 & 1/5 & 1/5 \\ 3/5 & 2/5 & 0 \\ 4/5 & 4/5 & 1/5\\ \end{pmatrix}AX=B=>A1AX=A1B=>X=A1BAX=B=>A^{-1}AX=A^{-1}B=>X=A^{-1}B

X=(xyz),B=(11714)X=\begin{pmatrix} x\\ y \\ z\\ \end{pmatrix}, B=\begin{pmatrix} 11\\ 7 \\ 14\\ \end{pmatrix}

A1B=(2/51/51/53/52/504/54/51/5)(11714)A^{-1}B=\begin{pmatrix} 2/5 & 1/5 & 1/5 \\ 3/5 & 2/5 & 0 \\ 4/5 & 4/5 & 1/5\\ \end{pmatrix}\begin{pmatrix} 11\\ 7 \\ 14\\ \end{pmatrix}

=((22+7+14)/5(33+14+0)/5(44+28+14)/5)=(43/547/586/5)=\begin{pmatrix} (22+7+14)/5\\ (33+14+0)/5 \\ (44+28+14)/5\\ \end{pmatrix}=\begin{pmatrix} 43/5\\ 47/5 \\ 86/5\\ \end{pmatrix}

x=435,y=475,z=865x=\dfrac{43}{5}, y=\dfrac{47}{5}, z=\dfrac{86}{5}

(435,475,865)(\dfrac{43}{5},\dfrac{47}{5}, \dfrac{86}{5})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS