(5.1)
A = ( − 2 7 1 3 4 1 8 1 5 ) , B = ( 8 1 5 3 4 1 − 2 7 1 ) A=\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix}, B=\begin{pmatrix}
8 &1 & 5 \\
3 & 4 & 1 \\
-2 & 7 & 1 \\
\end{pmatrix} A = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ , B = ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ A matrix A A A switches all matrix elements on row 1 1 1 with their counterparts on row 3. 3. 3.
The corresponding elementary matrix is obtained by swapping row 1 1 1 and row 3 3 3 of the identity matrix.
E 1 = ( 0 0 1 0 1 0 1 0 0 ) E_1=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix} E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
E 1 A = ( 0 0 1 0 1 0 1 0 0 ) ( − 2 7 1 3 4 1 8 1 5 ) E_1A=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix} E 1 A = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞
= ( 8 1 5 3 4 1 − 2 7 1 ) = B =\begin{pmatrix}
8 &1 & 5 \\
3 & 4 & 1 \\
-2 & 7 & 1 \\
\end{pmatrix}=B = ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ = B E 1 = ( 0 0 1 0 1 0 1 0 0 ) E_1=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix} E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
(5.2)
A matrix B B B switches all matrix elements on row 1 1 1 with their counterparts on row 3. 3. 3.
The corresponding elementary matrix is obtained by swapping row 1 1 1 and row 3 3 3 of the identity matrix.
E 1 = ( 0 0 1 0 1 0 1 0 0 ) E_1=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix} E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
E 1 B = ( 0 0 1 0 1 0 1 0 0 ) ( 8 1 5 3 4 1 − 2 7 1 ) E_1B=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix}\begin{pmatrix}
8 &1 & 5 \\
3 & 4 & 1 \\
-2 & 7 & 1 \\
\end{pmatrix} E 1 B = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞ ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞
= ( − 2 7 1 3 4 1 8 1 5 ) = A =\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix}=A = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = A E 1 = ( 0 0 1 0 1 0 1 0 0 ) E_1=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
\end{pmatrix} E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
(5.3)
A = ( − 2 7 1 3 4 1 8 1 5 ) , C = ( − 2 7 1 3 4 1 2 − 7 3 ) A=\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix}, C=\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
2 & -7 & 3 \\
\end{pmatrix} A = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ , C = ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ A matrix C C C is the matrix produced from A A A by adding ( − 2 ) (-2) ( − 2 ) times row 2 2 2 to row 3. 3. 3.
The corresponding elementary matrix is the identity matrix but with ( − 2 ) (-2) ( − 2 ) in the ( 2 , 3 ) (2,3) ( 2 , 3 )
position.
E 2 = ( 1 0 0 0 1 0 0 − 2 1 ) E_2=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1\\
\end{pmatrix} E 2 = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞
E 2 A = ( 1 0 0 0 1 0 0 − 2 1 ) ( − 2 7 1 3 4 1 8 1 5 ) E_2A=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1 \\
\end{pmatrix}\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix} E 2 A = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞ ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞
= ( − 2 7 1 3 4 1 2 − 7 3 ) = C =\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
2 & -7 & 3 \\
\end{pmatrix}=C = ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞ = C E 2 = ( 1 0 0 0 1 0 0 − 2 1 ) E_2=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1\\
\end{pmatrix} E 2 = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞
(5.4)
A matrix A A A is the matrix produced from C C C by adding ( 2 ) (2) ( 2 ) times row 2 2 2 to row 3. 3. 3.
The corresponding elementary matrix is the identity matrix but with ( 2 ) (2) ( 2 ) in the ( 2 , 3 ) (2,3) ( 2 , 3 )
position.
E 3 = ( 1 0 0 0 1 0 0 2 1 ) E_3=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1\\
\end{pmatrix} E 3 = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞
E 3 C = ( 1 0 0 0 1 0 0 2 1 ) ( − 2 7 1 3 4 1 2 − 7 3 ) E_3C=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1 \\
\end{pmatrix}\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
2 & -7 & 3 \\
\end{pmatrix} E 3 C = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞ ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞
= ( − 2 7 1 3 4 1 8 1 5 ) = A =\begin{pmatrix}
-2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5 \\
\end{pmatrix}=A = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ = A E 3 = ( 1 0 0 0 1 0 0 2 1 ) E_3=\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1\\
\end{pmatrix} E 3 = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞
Comments