Question #203612

Consider the matrices A =   −2 7 1 3 4 1 8 1 5   ,B =   8 1 5 3 4 1 −2 7 1   , C =   −2 7 1 3 4 1 2 −7 3   . Find elementary matrices E1, E2 and E3 such that (5.1) E1A = B, (1) (5.2) E1B = A, (1) (5.3) E2A = C, (1) (5.4) E3C = A.


1
Expert's answer
2021-06-08T07:31:32-0400

(5.1)


A=(271341815),B=(815341271)A=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}, B=\begin{pmatrix} 8 &1 & 5 \\ 3 & 4 & 1 \\ -2 & 7 & 1 \\ \end{pmatrix}

A matrix AA switches all matrix elements on row 11 with their counterparts on row 3.3.

The corresponding elementary matrix is obtained by swapping row 11  and row 33  of the identity matrix.

E1=(001010100)E_1=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}

E1A=(001010100)(271341815)E_1A=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}

=(815341271)=B=\begin{pmatrix} 8 &1 & 5 \\ 3 & 4 & 1 \\ -2 & 7 & 1 \\ \end{pmatrix}=B

E1=(001010100)E_1=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}



(5.2)

A matrix BB switches all matrix elements on row 11 with their counterparts on row 3.3.

The corresponding elementary matrix is obtained by swapping row 11 and row 33 of the identity matrix.


E1=(001010100)E_1=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}

E1B=(001010100)(815341271)E_1B=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}\begin{pmatrix} 8 &1 & 5 \\ 3 & 4 & 1 \\ -2 & 7 & 1 \\ \end{pmatrix}

=(271341815)=A=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}=A

E1=(001010100)E_1=\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}


(5.3)


A=(271341815),C=(271341273)A=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}, C=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 2 & -7 & 3 \\ \end{pmatrix}

A matrix CC is the matrix produced from AA by adding (2)(-2) times row 22 to row 3.3.

The corresponding elementary matrix is the identity matrix but with (2)(-2) in the (2,3)(2,3)

position.


E2=(100010021)E_2=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\\ \end{pmatrix}

E2A=(100010021)(271341815)E_2A=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \\ \end{pmatrix}\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}

=(271341273)=C=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 2 & -7 & 3 \\ \end{pmatrix}=C

E2=(100010021)E_2=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1\\ \end{pmatrix}

(5.4)

A matrix AA is the matrix produced from CC by adding (2)(2) times row 22 to row 3.3.

The corresponding elementary matrix is the identity matrix but with (2)(2) in the (2,3)(2,3)

position.


E3=(100010021)E_3=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\\ \end{pmatrix}

E3C=(100010021)(271341273)E_3C=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \\ \end{pmatrix}\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 2 & -7 & 3 \\ \end{pmatrix}




=(271341815)=A=\begin{pmatrix} -2 & 7 & 1 \\ 3 & 4 & 1 \\ 8 & 1 & 5 \\ \end{pmatrix}=A

E3=(100010021)E_3=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\\ \end{pmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS