Answer to Question #203636 in Linear Algebra for khosa

Question #203636

Consider the following augmented matrix [12]   1 −1 2 1 3 −1 5 −2 −4 2 x 2 − 8 x + 2   . Determine the values of x for which the system has (i) no solution, (ii) exactly one solution, (iii) infinitely many solutions.


1
Expert's answer
2021-06-08T11:57:29-0400

Question

consider the following augmented matrix

"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"

Determine the values of x for which the system has

(i)no solution

(ii)exactly one solution

(iii)infinitely many solutions.



solution

Here


"[A|B]=\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}\\\\\\&\\space A=\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc}\n1&-1&2& \\\\ \n3&-1&5& \\\\ \n\n-4&2&x^2-8&\\\\ \n\\end{array}\n\\end{bmatrix}"


"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"


step 1:

multiply 3 to row 1 and subtract from row 2


"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"


step2:

multiply 4 to row 1 and add to row 3


"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n0&-2&x^2&x+6\\\\ \n\\end{array}\n\\end{bmatrix}"

step3:

row 2 add to row 3


"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n0&0&x^2-1&x+1\\\\ \n\\end{array}\n\\end{bmatrix}"


now we want system has

(i)no solution

"If rank(A) < rank(A|B), then the system is no solution"


for no solution

"rank(A)=2 \\implies x^2-1=0\\implies x=+1 \\space ,-1\\\\\n\nrank(A|B)=3\\implies x+1\\neq0\\implies x\\neq-1\\\\"


hence both condition give value of x=+1

(ii)exactly one solution

"If rank(A) = rank(A|B) = the number of rows in x, then the system has exactly one solution. "


for exactly one solution

"rank(A) =number\\space of \\space rows=3\\implies x^2-1\\neq0\\implies x\\neq+1,-1\\\\\n\\\\\n rank(A|B) =number\\space of \\space rows=3\\implies x+1\\neq0 \\implies x\\neq-1"

hence both condition give value of "x\\isin R ; x\\neq +1,-1"

(iii)infinitely many solutions.

If rank(A) = rank(A|B) < the number of rows in x, then the system has infinitely -many solutions.

for infinitely -many solutions.

"rank(A) = rank(A|B) < \\space number \\space of \\space rows \\space \nhence\\\\\nrank(A) =2\\implies x^2-1=0 \\implies x=+1,-1\\\\\nrank(A|B)=2\\implies x+1=0 \\implies x=-1"

hence both condition give value of x=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS