Answer to Question #203636 in Linear Algebra for khosa

Question #203636

Consider the following augmented matrix [12]   1 −1 2 1 3 −1 5 −2 −4 2 x 2 − 8 x + 2   . Determine the values of x for which the system has (i) no solution, (ii) exactly one solution, (iii) infinitely many solutions.


1
Expert's answer
2021-06-08T11:57:29-0400

Question

consider the following augmented matrix

[1121315242x28x+2]\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 3&-1&5&-2 \\ -4&2&x^2-8&x+2\\ \end{array} \end{bmatrix}

Determine the values of x for which the system has

(i)no solution

(ii)exactly one solution

(iii)infinitely many solutions.



solution

Here


[AB]=[1121315242x28x+2]& A=[11231542x28][A|B]=\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 3&-1&5&-2 \\ -4&2&x^2-8&x+2\\ \end{array} \end{bmatrix}\\\&\space A=\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc} 1&-1&2& \\ 3&-1&5& \\ -4&2&x^2-8&\\ \end{array} \end{bmatrix}


[1121315242x28x+2]\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 3&-1&5&-2 \\ -4&2&x^2-8&x+2\\ \end{array} \end{bmatrix}


step 1:

multiply 3 to row 1 and subtract from row 2


[1121021542x28x+2]\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 0&2&-1&-5 \\ -4&2&x^2-8&x+2\\ \end{array} \end{bmatrix}


step2:

multiply 4 to row 1 and add to row 3


[1121021502x2x+6]\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 0&2&-1&-5 \\ 0&-2&x^2&x+6\\ \end{array} \end{bmatrix}

step3:

row 2 add to row 3


[1121021500x21x+1]\begin{bmatrix} \def\arraystretch{1.5} \begin{array}{ ccc:} 1&-1&2&1 \\ 0&2&-1&-5 \\ 0&0&x^2-1&x+1\\ \end{array} \end{bmatrix}


now we want system has

(i)no solution

"If rank(A) < rank(A|B), then the system is no solution"


for no solution

rank(A)=2    x21=0    x=+1 ,1rank(AB)=3    x+10    x1rank(A)=2 \implies x^2-1=0\implies x=+1 \space ,-1\\ rank(A|B)=3\implies x+1\neq0\implies x\neq-1\\


hence both condition give value of x=+1

(ii)exactly one solution

"If rank(A) = rank(A|B) = the number of rows in x, then the system has exactly one solution. "


for exactly one solution

rank(A)=number of rows=3    x210    x+1,1rank(AB)=number of rows=3    x+10    x1rank(A) =number\space of \space rows=3\implies x^2-1\neq0\implies x\neq+1,-1\\ \\ rank(A|B) =number\space of \space rows=3\implies x+1\neq0 \implies x\neq-1

hence both condition give value of xR;x+1,1x\isin R ; x\neq +1,-1

(iii)infinitely many solutions.

If rank(A) = rank(A|B) < the number of rows in x, then the system has infinitely -many solutions.

for infinitely -many solutions.

rank(A)=rank(AB)< number of rows hencerank(A)=2    x21=0    x=+1,1rank(AB)=2    x+1=0    x=1rank(A) = rank(A|B) < \space number \space of \space rows \space hence\\ rank(A) =2\implies x^2-1=0 \implies x=+1,-1\\ rank(A|B)=2\implies x+1=0 \implies x=-1

hence both condition give value of x=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment