Consider the following augmented matrix [12]   1 −1 2 1 3 −1 5 −2 −4 2 x 2 − 8 x + 2   . Determine the values of x for which the system has (i) no solution, (ii) exactly one solution, (iii) infinitely many solutions.
Question
consider the following augmented matrix
"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"
Determine the values of x for which the system has
(i)no solution
(ii)exactly one solution
(iii)infinitely many solutions.
solution
Here
"[A|B]=\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}\\\\\\&\\space A=\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc}\n1&-1&2& \\\\ \n3&-1&5& \\\\ \n\n-4&2&x^2-8&\\\\ \n\\end{array}\n\\end{bmatrix}"
"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n3&-1&5&-2 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"
step 1:
multiply 3 to row 1 and subtract from row 2
"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n-4&2&x^2-8&x+2\\\\ \n\\end{array}\n\\end{bmatrix}"
step2:
multiply 4 to row 1 and add to row 3
"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n0&-2&x^2&x+6\\\\ \n\\end{array}\n\\end{bmatrix}"
step3:
row 2 add to row 3
"\\begin{bmatrix}\n \\def\\arraystretch{1.5}\n \\begin{array}{ ccc:}\n1&-1&2&1 \\\\ \n0&2&-1&-5 \\\\ \n\n0&0&x^2-1&x+1\\\\ \n\\end{array}\n\\end{bmatrix}"
now we want system has
(i)no solution
"If rank(A) < rank(A|B), then the system is no solution"
for no solution
"rank(A)=2 \\implies x^2-1=0\\implies x=+1 \\space ,-1\\\\\n\nrank(A|B)=3\\implies x+1\\neq0\\implies x\\neq-1\\\\"
hence both condition give value of x=+1
(ii)exactly one solution
"If rank(A) = rank(A|B) = the number of rows in x, then the system has exactly one solution. "
for exactly one solution
"rank(A) =number\\space of \\space rows=3\\implies x^2-1\\neq0\\implies x\\neq+1,-1\\\\\n\\\\\n rank(A|B) =number\\space of \\space rows=3\\implies x+1\\neq0 \\implies x\\neq-1"
hence both condition give value of "x\\isin R ; x\\neq +1,-1"
(iii)infinitely many solutions.
If rank(A) = rank(A|B) < the number of rows in x, then the system has infinitely -many solutions.
for infinitely -many solutions.
"rank(A) = rank(A|B) < \\space number \\space of \\space rows \\space \nhence\\\\\nrank(A) =2\\implies x^2-1=0 \\implies x=+1,-1\\\\\nrank(A|B)=2\\implies x+1=0 \\implies x=-1"
hence both condition give value of x=-1
Comments
Leave a comment