Question
consider the following augmented matrix
[ 1 − 1 2 1 3 − 1 5 − 2 − 4 2 x 2 − 8 x + 2 ] \begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
3&-1&5&-2 \\
-4&2&x^2-8&x+2\\
\end{array}
\end{bmatrix} ⎣ ⎡ 1 3 − 4 − 1 − 1 2 2 5 x 2 − 8 1 − 2 x + 2 ⎦ ⎤
Determine the values of x for which the system has
(i)no solution
(ii)exactly one solution
(iii)infinitely many solutions.
solution
Here
[ A ∣ B ] = [ 1 − 1 2 1 3 − 1 5 − 2 − 4 2 x 2 − 8 x + 2 ] & A = [ 1 − 1 2 3 − 1 5 − 4 2 x 2 − 8 ] [A|B]=\begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
3&-1&5&-2 \\
-4&2&x^2-8&x+2\\
\end{array}
\end{bmatrix}\\\&\space A=\begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc}
1&-1&2& \\
3&-1&5& \\
-4&2&x^2-8&\\
\end{array}
\end{bmatrix} [ A ∣ B ] = ⎣ ⎡ 1 3 − 4 − 1 − 1 2 2 5 x 2 − 8 1 − 2 x + 2 ⎦ ⎤ & A = ⎣ ⎡ 1 3 − 4 − 1 − 1 2 2 5 x 2 − 8 ⎦ ⎤
[ 1 − 1 2 1 3 − 1 5 − 2 − 4 2 x 2 − 8 x + 2 ] \begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
3&-1&5&-2 \\
-4&2&x^2-8&x+2\\
\end{array}
\end{bmatrix} ⎣ ⎡ 1 3 − 4 − 1 − 1 2 2 5 x 2 − 8 1 − 2 x + 2 ⎦ ⎤
step 1:
multiply 3 to row 1 and subtract from row 2
[ 1 − 1 2 1 0 2 − 1 − 5 − 4 2 x 2 − 8 x + 2 ] \begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
0&2&-1&-5 \\
-4&2&x^2-8&x+2\\
\end{array}
\end{bmatrix} ⎣ ⎡ 1 0 − 4 − 1 2 2 2 − 1 x 2 − 8 1 − 5 x + 2 ⎦ ⎤
step2:
multiply 4 to row 1 and add to row 3
[ 1 − 1 2 1 0 2 − 1 − 5 0 − 2 x 2 x + 6 ] \begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
0&2&-1&-5 \\
0&-2&x^2&x+6\\
\end{array}
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 2 − 2 2 − 1 x 2 1 − 5 x + 6 ⎦ ⎤
step3:
row 2 add to row 3
[ 1 − 1 2 1 0 2 − 1 − 5 0 0 x 2 − 1 x + 1 ] \begin{bmatrix}
\def\arraystretch{1.5}
\begin{array}{ ccc:}
1&-1&2&1 \\
0&2&-1&-5 \\
0&0&x^2-1&x+1\\
\end{array}
\end{bmatrix} ⎣ ⎡ 1 0 0 − 1 2 0 2 − 1 x 2 − 1 1 − 5 x + 1 ⎦ ⎤
now we want system has
(i)no solution
"If rank(A) < rank(A|B), then the system is no solution"
for no solution
r a n k ( A ) = 2 ⟹ x 2 − 1 = 0 ⟹ x = + 1 , − 1 r a n k ( A ∣ B ) = 3 ⟹ x + 1 ≠ 0 ⟹ x ≠ − 1 rank(A)=2 \implies x^2-1=0\implies x=+1 \space ,-1\\
rank(A|B)=3\implies x+1\neq0\implies x\neq-1\\ r ank ( A ) = 2 ⟹ x 2 − 1 = 0 ⟹ x = + 1 , − 1 r ank ( A ∣ B ) = 3 ⟹ x + 1 = 0 ⟹ x = − 1
hence both condition give value of x=+1
(ii)exactly one solution
"If rank(A) = rank(A|B) = the number of rows in x, then the system has exactly one solution. "
for exactly one solution
r a n k ( A ) = n u m b e r o f r o w s = 3 ⟹ x 2 − 1 ≠ 0 ⟹ x ≠ + 1 , − 1 r a n k ( A ∣ B ) = n u m b e r o f r o w s = 3 ⟹ x + 1 ≠ 0 ⟹ x ≠ − 1 rank(A) =number\space of \space rows=3\implies x^2-1\neq0\implies x\neq+1,-1\\
\\
rank(A|B) =number\space of \space rows=3\implies x+1\neq0 \implies x\neq-1 r ank ( A ) = n u mb er o f ro w s = 3 ⟹ x 2 − 1 = 0 ⟹ x = + 1 , − 1 r ank ( A ∣ B ) = n u mb er o f ro w s = 3 ⟹ x + 1 = 0 ⟹ x = − 1
hence both condition give value of x ∈ R ; x ≠ + 1 , − 1 x\isin R ; x\neq +1,-1 x ∈ R ; x = + 1 , − 1
(iii)infinitely many solutions.
If rank(A) = rank(A|B) < the number of rows in x, then the system has infinitely -many solutions.
for infinitely -many solutions.
r a n k ( A ) = r a n k ( A ∣ B ) < n u m b e r o f r o w s h e n c e r a n k ( A ) = 2 ⟹ x 2 − 1 = 0 ⟹ x = + 1 , − 1 r a n k ( A ∣ B ) = 2 ⟹ x + 1 = 0 ⟹ x = − 1 rank(A) = rank(A|B) < \space number \space of \space rows \space
hence\\
rank(A) =2\implies x^2-1=0 \implies x=+1,-1\\
rank(A|B)=2\implies x+1=0 \implies x=-1 r ank ( A ) = r ank ( A ∣ B ) < n u mb er o f ro w s h e n ce r ank ( A ) = 2 ⟹ x 2 − 1 = 0 ⟹ x = + 1 , − 1 r ank ( A ∣ B ) = 2 ⟹ x + 1 = 0 ⟹ x = − 1
hence both condition give value of x=-1
Comments
Leave a comment