Question #204341

Example of Vector space and subspace in which it's all properties must satisfied.


1
Expert's answer
2021-06-08T11:57:52-0400

Consider the vector space R3\R^3 over field R\R with usual addition

(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2)(x_1,y_1,z_1)+(x_2,y_2,z_2)=(x_1+x_2,y_1+y_2,z_1+z_2)

and multiplication by a scalar αR: α(x,y,z)=(αx,αy,αz).\alpha\in\R:\ \alpha\cdot(x,y,z)=(\alpha x, \alpha y, \alpha z).

Let us show that W={(x,3x,2x)xR}W= \{(x,-3x,2x)|x\in\mathbb R\} is a subspace of R3\mathbb R^3. Let α,βR, (x,3x,2x),(y,3y,2y)W.\alpha, \beta\in\mathbb R,\ (x,-3x,2x), (y,-3y,2y)\in W. Then α(x,3x,2x)+β(y,3y,2y)=(αx,3αx,2αx)+(βy,3βy,2βy)=(αx+βy,3αx3βy,2αx+2βy)=(αx+βy,3(αx+βy),2(αx+βy))W.\alpha (x,-3x,2x)+\beta (y,-3y,2y)= (\alpha x,-3\alpha x,2\alpha x)+(\beta y,-3\beta y,2\beta y)= (\alpha x+\beta y,-3\alpha x-3\beta y,2\alpha x+2\beta y)= (\alpha x+\beta y,-3(\alpha x+\beta y),2(\alpha x+\beta y))\in W.

Therefore, W={(x,3x,2x)xR}W= \{(x,-3x,2x)|x\in\mathbb R\} is a subspace of R3\mathbb R^3.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
16.07.21, 00:17

Dear Haseeb, please use the panel for submitting a new question.


Haseeb
08.07.21, 12:22

Give an example which satisfies the properties of vector space, subspace and inner product space And number should be complex

LATEST TUTORIALS
APPROVED BY CLIENTS