Consider the vector space R3 over field R with usual addition
(x1,y1,z1)+(x2,y2,z2)=(x1+x2,y1+y2,z1+z2)
and multiplication by a scalar α∈R: α⋅(x,y,z)=(αx,αy,αz).
Let us show that W={(x,−3x,2x)∣x∈R} is a subspace of R3. Let α,β∈R, (x,−3x,2x),(y,−3y,2y)∈W. Then α(x,−3x,2x)+β(y,−3y,2y)=(αx,−3αx,2αx)+(βy,−3βy,2βy)=(αx+βy,−3αx−3βy,2αx+2βy)=(αx+βy,−3(αx+βy),2(αx+βy))∈W.
Therefore, W={(x,−3x,2x)∣x∈R} is a subspace of R3.
Comments
Dear Haseeb, please use the panel for submitting a new question.
Give an example which satisfies the properties of vector space, subspace and inner product space And number should be complex