Question #204096

determine if set of vectors are linearly independent v1={4,1,2}, v2={-3,0,1} and v3={1,2,1}


1
Expert's answer
2021-06-07T19:37:23-0400

Let us determine the determinant of the matrix consisting of coordinates of vectors:

d=412301121=4012113111+23012d = \begin{vmatrix} 4 & 1 & 2 \\ -3 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 4\begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} -3 & 0 \\ 1 & 2 \end{vmatrix} ,

d=4(0121)1(3111)+2(3210),d=16.d = 4\cdot(0\cdot1 -2\cdot1 ) -1\cdot(-3\cdot1 -1\cdot 1)+2\cdot(-3\cdot2 - 1\cdot0), \\ d = -16.

The determinant is not 0, so the system of vectors is linearly independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS