determine if set of vectors are linearly independent v1={4,1,2}, v2={-3,0,1} and v3={1,2,1}
Let us determine the determinant of the matrix consisting of coordinates of vectors:
d=∣412−301121∣=4∣0121∣−1∣−3111∣+2∣−3012∣d = \begin{vmatrix} 4 & 1 & 2 \\ -3 & 0 & 1 \\ 1 & 2 & 1 \end{vmatrix} = 4\begin{vmatrix} 0 & 1 \\ 2 & 1 \end{vmatrix} - 1 \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} -3 & 0 \\ 1 & 2 \end{vmatrix}d=∣∣4−31102211∣∣=4∣∣0211∣∣−1∣∣−3111∣∣+2∣∣−3102∣∣ ,
d=4⋅(0⋅1−2⋅1)−1⋅(−3⋅1−1⋅1)+2⋅(−3⋅2−1⋅0),d=−16.d = 4\cdot(0\cdot1 -2\cdot1 ) -1\cdot(-3\cdot1 -1\cdot 1)+2\cdot(-3\cdot2 - 1\cdot0), \\ d = -16.d=4⋅(0⋅1−2⋅1)−1⋅(−3⋅1−1⋅1)+2⋅(−3⋅2−1⋅0),d=−16.
The determinant is not 0, so the system of vectors is linearly independent.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments