determine if set of vectors are linearly independent v1={4,1,2}, v2={-3,0,1} and v3={1,2,1}
Let us determine the determinant of the matrix consisting of coordinates of vectors:
"d = \\begin{vmatrix}\n 4 & 1 & 2 \\\\\n -3 & 0 & 1 \\\\\n1 & 2 & 1\n\\end{vmatrix} = 4\\begin{vmatrix}\n 0 & 1 \\\\\n 2 & 1\n\\end{vmatrix} - 1 \\begin{vmatrix}\n -3 & 1 \\\\\n 1 & 1\n\\end{vmatrix} + 2 \\begin{vmatrix}\n -3 & 0 \\\\\n 1 & 2\n\\end{vmatrix}" ,
"d = 4\\cdot(0\\cdot1 -2\\cdot1 ) -1\\cdot(-3\\cdot1 -1\\cdot 1)+2\\cdot(-3\\cdot2 - 1\\cdot0), \\\\\nd = -16."
The determinant is not 0, so the system of vectors is linearly independent.
Comments
Leave a comment