Answer to Question #200609 in Linear Algebra for Mpopo

Question #200609

(5.1)Find det(−2A) and compare it to det(A) for

A= 1 1

3 -1


(5.2)Find det(−2A) and compare it to det(A) for


-2 1 3

A = 1 4 5

2 3 1



1
Expert's answer
2021-05-31T19:17:02-0400

Solution:

(5.1):

"A=\\begin{bmatrix}1&1\\\\ \\:\\:3&-1\\end{bmatrix}\n\\\\|A|=\\begin{vmatrix}1&1\\\\ \\:\\:3&-1\\end{vmatrix}=1(-1)-3(1)=-4\\ ...(i)"

"-2A=-2\\begin{bmatrix}1&1\\\\ \\:\\:3&-1\\end{bmatrix}=\\begin{bmatrix}-2&-2\\\\ \\:\\:-6&2\\end{bmatrix}\n\\\\|-2A|=\\begin{vmatrix}-2&-2\\\\ \\:\\:-6&2\\end{vmatrix}=-2(2)-(-2)(-6)=-4-12=-16"

Now, "|-2A|=-16=-4(4)=4A" [Using (i)]

(5.2):

"A=\\begin{bmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{bmatrix}\n\\\\|A|=\\begin{vmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{vmatrix}\n\\\\=-2\\cdot \\det \\begin{pmatrix}4&5\\\\ 3&1\\end{pmatrix}-1\\cdot \\det \\begin{pmatrix}1&5\\\\ 2&1\\end{pmatrix}+3\\cdot \\det \\begin{pmatrix}1&4\\\\ 2&3\\end{pmatrix}"

"=-2\\left(-11\\right)-1\\cdot \\left(-9\\right)+3\\left(-5\\right)=16" ...(i)

Now, "-2A=-2\\begin{bmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{bmatrix}"

"=\\begin{bmatrix}4&-2&-6\\\\ -2&-8&-10\\\\ -4&-6&-2\\end{bmatrix}"

"|-2A|=4\\cdot \\det \\begin{pmatrix}-8&-10\\\\ -6&-2\\end{pmatrix}-\\left(-2\\right)\\det \\begin{pmatrix}-2&-10\\\\ -4&-2\\end{pmatrix}-6\\cdot \\det \\begin{pmatrix}-2&-8\\\\ -4&-6\\end{pmatrix}"

"=4\\left(-44\\right)-\\left(-2\\right)\\left(-36\\right)-6\\left(-20\\right)=-128\n\\\\=16(-8)=-8|A| \\ \\ [\\text{using (i)}]"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS