(5.1)Find det(−2A) and compare it to det(A) for
A= 1 1
3 -1
(5.2)Find det(−2A) and compare it to det(A) for
-2 1 3
A = 1 4 5
2 3 1
Solution:
(5.1):
"A=\\begin{bmatrix}1&1\\\\ \\:\\:3&-1\\end{bmatrix}\n\\\\|A|=\\begin{vmatrix}1&1\\\\ \\:\\:3&-1\\end{vmatrix}=1(-1)-3(1)=-4\\ ...(i)"
"-2A=-2\\begin{bmatrix}1&1\\\\ \\:\\:3&-1\\end{bmatrix}=\\begin{bmatrix}-2&-2\\\\ \\:\\:-6&2\\end{bmatrix}\n\\\\|-2A|=\\begin{vmatrix}-2&-2\\\\ \\:\\:-6&2\\end{vmatrix}=-2(2)-(-2)(-6)=-4-12=-16"
Now, "|-2A|=-16=-4(4)=4A" [Using (i)]
(5.2):
"A=\\begin{bmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{bmatrix}\n\\\\|A|=\\begin{vmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{vmatrix}\n\\\\=-2\\cdot \\det \\begin{pmatrix}4&5\\\\ 3&1\\end{pmatrix}-1\\cdot \\det \\begin{pmatrix}1&5\\\\ 2&1\\end{pmatrix}+3\\cdot \\det \\begin{pmatrix}1&4\\\\ 2&3\\end{pmatrix}"
"=-2\\left(-11\\right)-1\\cdot \\left(-9\\right)+3\\left(-5\\right)=16" ...(i)
Now, "-2A=-2\\begin{bmatrix}-2&1&3\\\\ \\:\\:1&4&5\\\\ \\:\\:2&3&1\\end{bmatrix}"
"=\\begin{bmatrix}4&-2&-6\\\\ -2&-8&-10\\\\ -4&-6&-2\\end{bmatrix}"
"|-2A|=4\\cdot \\det \\begin{pmatrix}-8&-10\\\\ -6&-2\\end{pmatrix}-\\left(-2\\right)\\det \\begin{pmatrix}-2&-10\\\\ -4&-2\\end{pmatrix}-6\\cdot \\det \\begin{pmatrix}-2&-8\\\\ -4&-6\\end{pmatrix}"
"=4\\left(-44\\right)-\\left(-2\\right)\\left(-36\\right)-6\\left(-20\\right)=-128\n\\\\=16(-8)=-8|A| \\ \\ [\\text{using (i)}]"
Comments
Leave a comment