Evaluate det(−A) and det(−A T ). Compare det(−A) and det(−A T ) for:
(2.1) A = -4 2
3 -3
(2.2) A = 3 1 -2
-5 3 -6
-1 0 -4
The determinant of the transpose of a square matrix is equal to the determinant of the matrix, that is,
2.1
"-A=\\begin{bmatrix}\n 4 & -2 \\\\\n -3 & 3\n\\end{bmatrix}"
"\\det (-A)=\\begin{vmatrix}\n 4 & -2 \\\\\n -3 & 3\n\\end{vmatrix}=4(3)-(-2)(-3)=18"
"A^T=\\begin{bmatrix}\n -4 & 2 \\\\\n 3 & -3\n\\end{bmatrix}^T=\\begin{bmatrix}\n -4 & 3 \\\\\n 2 & -3\n\\end{bmatrix}"
"-A^T=\\begin{bmatrix}\n 4 & -3 \\\\\n -2 & 3\n\\end{bmatrix}"
2.2
"-A=\\begin{bmatrix}\n -3 & -1 & 2 \\\\\n 5 & -3 & 6 \\\\\n1 & 0 & 4\n\\end{bmatrix}"
"\\det (-A)=\\begin{vmatrix}\n -3 & -1 & 2 \\\\\n 5 & -3 & 6 \\\\\n1 & 0 & 4\n\\end{vmatrix}"
"=1\\begin{vmatrix}\n -1& 2 \\\\\n -3 & 6\n\\end{vmatrix}-0\\begin{vmatrix}\n -3 & 2 \\\\\n 5 & 6\n\\end{vmatrix}+4\\begin{vmatrix}\n -3 & -1 \\\\\n 5 & -3\n\\end{vmatrix}"
"=-6+6+4(9+5)=56"
"A^T=\\begin{bmatrix}\n 3 & 1 & -2 \\\\\n -5 & 3 & -6 \\\\\n-1 & 0 & -4\n\\end{bmatrix}^T=\\begin{bmatrix}\n 3 &- 5 & -1 \\\\\n 1 & 3 & 0 \\\\\n-2 & -6 & -4\n\\end{bmatrix}"
"-A^T=\\begin{bmatrix}\n -3 & 5 & 1 \\\\\n -1 & -3 & 0 \\\\\n2 & 6 & 4\n\\end{bmatrix}"
"=1\\begin{vmatrix}\n -1& -3 \\\\\n 2 & 6\n\\end{vmatrix}-0\\begin{vmatrix}\n -3 & 5 \\\\\n 2 & 6\n\\end{vmatrix}+4\\begin{vmatrix}\n -3 &5 \\\\\n -1 & -3\n\\end{vmatrix}"
Comments
Leave a comment