Answer to Question #200602 in Linear Algebra for Mpopo

Question #200602

Evaluate det(−A) and det(−A T ). Compare det(−A) and det(−A T ) for:

(2.1) A = -4 2

3 -3


(2.2) A = 3 1 -2

-5 3 -6

-1 0 -4


1
Expert's answer
2021-05-31T16:26:56-0400

The determinant of the transpose of a square matrix is equal to the determinant of the matrix, that is,


"\\det(A^T)=\\det (A)"

2.1


"A=\\begin{bmatrix}\n -4 & 2 \\\\\n 3 & -3\n\\end{bmatrix}"

"-A=\\begin{bmatrix}\n 4 & -2 \\\\\n -3 & 3\n\\end{bmatrix}"

"\\det (-A)=\\begin{vmatrix}\n 4 & -2 \\\\\n -3 & 3\n\\end{vmatrix}=4(3)-(-2)(-3)=18"

"A^T=\\begin{bmatrix}\n -4 & 2 \\\\\n 3 & -3\n\\end{bmatrix}^T=\\begin{bmatrix}\n -4 & 3 \\\\\n 2 & -3\n\\end{bmatrix}"

"-A^T=\\begin{bmatrix}\n 4 & -3 \\\\\n -2 & 3\n\\end{bmatrix}"


"\\det (-A^T)=\\begin{vmatrix}\n 4 & -3 \\\\\n -2 & 3\n\\end{vmatrix}=4(3)-(-2)(-3)=18"


"\\det (-A)=\\det (-A^T)"

2.2



"A=\\begin{bmatrix}\n 3 & 1 & -2 \\\\\n -5 & 3 & -6 \\\\\n-1 & 0 & -4\n\\end{bmatrix}"

"-A=\\begin{bmatrix}\n -3 & -1 & 2 \\\\\n 5 & -3 & 6 \\\\\n1 & 0 & 4\n\\end{bmatrix}"

"\\det (-A)=\\begin{vmatrix}\n -3 & -1 & 2 \\\\\n 5 & -3 & 6 \\\\\n1 & 0 & 4\n\\end{vmatrix}"

"=1\\begin{vmatrix}\n -1& 2 \\\\\n -3 & 6\n\\end{vmatrix}-0\\begin{vmatrix}\n -3 & 2 \\\\\n 5 & 6\n\\end{vmatrix}+4\\begin{vmatrix}\n -3 & -1 \\\\\n 5 & -3\n\\end{vmatrix}"

"=-6+6+4(9+5)=56"

"A^T=\\begin{bmatrix}\n 3 & 1 & -2 \\\\\n -5 & 3 & -6 \\\\\n-1 & 0 & -4\n\\end{bmatrix}^T=\\begin{bmatrix}\n 3 &- 5 & -1 \\\\\n 1 & 3 & 0 \\\\\n-2 & -6 & -4\n\\end{bmatrix}"

"-A^T=\\begin{bmatrix}\n -3 & 5 & 1 \\\\\n -1 & -3 & 0 \\\\\n2 & 6 & 4\n\\end{bmatrix}"


"\\det (-A^T)=\\begin{vmatrix}\n -3 & 5 & 1 \\\\\n -1 & -3 & 0 \\\\\n2 & 6 & 4\n\\end{vmatrix}"

"=1\\begin{vmatrix}\n -1& -3 \\\\\n 2 & 6\n\\end{vmatrix}-0\\begin{vmatrix}\n -3 & 5 \\\\\n 2 & 6\n\\end{vmatrix}+4\\begin{vmatrix}\n -3 &5 \\\\\n -1 & -3\n\\end{vmatrix}"


"=-6+6-9+4(9+5)=56"


"\\det (-A)=\\det (-A^T)"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS