Question #200538

A=[3 0 2]

[4 -6 3]

[-2 1 8]


B=[-5 1 1]

[0 3 0]

[7 6 2]


C=[1 1 1]

[2 3 - 1]

[3 - 5 - 7]

Verify the following expressions(where possible and give reasons)

(i) A+(B+C) =(A+B) +C and A(BC) =(AB) C

(ii) (a-b) C=aC - bC and a(B - C) =aB - aC

(iii) (A^T) ^T=A and (A - B) ^T=A^T - B^T


1
Expert's answer
2021-06-01T09:13:55-0400

A = [302463218]\begin{bmatrix} 3 & 0 & 2 \\ 4 & -6 & 3\\ -2 & 1 & 8\\ \end{bmatrix}


B = [511030762]\begin{bmatrix} -5 & 1 &1 \\ 0 & 3 & 0 \\ 7 & 6 & 2 \\ \end{bmatrix}


C = [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}




(i) A+(B+C) =(A+B) +C and A(BC) =(AB) C


a) A+(B+C) =(A+B) +C


LHS:

= A+(B+C)


=[302463218]\begin{bmatrix} 3 & 0 & 2 \\ 4 & -6 & 3\\ -2 & 1 & 8\\ \end{bmatrix} + [4222611015]\begin{bmatrix} -4 & 2 &2 \\ 2 & 6 & -1 \\ 10 & 1 & -5 \\ \end{bmatrix}


= [124602823]\begin{bmatrix} -1 & 2 &4\\ 6 & 0 &2\\ 8&2&3 \end{bmatrix}



RHS:

(A+B) +C


= [2134335710]\begin{bmatrix} -2&1&3\\ 4&-3&3\\ 5&7&10 \end{bmatrix} + [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}


= [124602823]\begin{bmatrix} -1 & 2 &4\\ 6 & 0 &2\\ 8&2&3 \end{bmatrix}



LHS = RHS




b) A(BC) =(AB) C

LHS:


= [302463218]\begin{bmatrix} 3 & 0 & 2 \\ 4 & -6 & 3\\ -2 & 1 & 8\\ \end{bmatrix} * [0713693251513]\begin{bmatrix} 0&-7&-13\\ 6&9&-3\\ 25&15&-13\\ \end{bmatrix}


= [5096539377320614381]\begin{bmatrix} 50&9&-65\\ 39&-37&-73\\ 206&143&-81\\ \end{bmatrix}



RHS:


= [11571410664914]\begin{bmatrix} -1 & 15&7 \\ 1 & 4&10\\ 66&49&14\\ \end{bmatrix} * [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}



= [5096539377320614381]\begin{bmatrix} 50&9&-65\\ 39&-37&-73\\ 206&143&-81\\ \end{bmatrix}




LHS = RHS





(ii) (a-b) C=aC - bC and a(B - C) =aB - aC


a) (a-b) C=aC - bC

LHS:


= (a - b) * [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}


= [ababab2(ab)3(ab)1(ab)3(ab)5(ab)7(ab)]\begin{bmatrix} a-b & a-b &a-b\\ 2(a - b) &3(a - b)&-1(a - b)\\ 3(a - b)&-5(a - b)&-7(a - b)\\ \end{bmatrix}



RHS:


= a * [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix} - b * [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}


= [aaa2a3aa3a5a7a]\begin{bmatrix} a & a &a\\ 2a &3a&-a\\ 3a&-5a&-7a \end{bmatrix} - [bbb2b3bb3b5b7b]\begin{bmatrix} b & b &b\\ 2b &3b&-b\\ 3b&-5b&-7b \end{bmatrix}



= [ababab2(ab)3(ab)1(ab)3(ab)5(ab)7(ab)]\begin{bmatrix} a-b & a-b &a-b\\ 2(a - b) &3(a - b)&-1(a - b)\\ 3(a - b)&-5(a - b)&-7(a - b)\\ \end{bmatrix}



LHS = RHS


b) a(B - C) =aB - aC


LHS:


= a * [6002014119]\begin{bmatrix} -6&0&0\\ -2&0&1\\ 4&11&9 \end{bmatrix}


= [6a002a0a4a11a9a]\begin{bmatrix} -6a&0&0\\ -2a&0&a\\ 4a&11a&9a \end{bmatrix}



RHS:


= aB - aC

= a * [511030762]\begin{bmatrix} -5 & 1 &1 \\ 0 & 3 & 0 \\ 7 & 6 & 2 \\ \end{bmatrix} - a * [111231357]\begin{bmatrix} 1 & 1 &1\\ 2 &3&-1\\ 3&-5&-7 \end{bmatrix}


= [6a002a0a4a11a9a]\begin{bmatrix} -6a&0&0\\ -2a&0&a\\ 4a&11a&9a \end{bmatrix}


LHS = RHS






(iii) (A^T) ^T=A and (A - B) ^T=A^T - B^T


a) (A^T) ^T=A


LHS:


= ( AT ) T


= ([342461218])T(\begin{bmatrix} 3 & 4 & -2 \\ 4 & -6 & 1\\ -2 & 1 & 8\\ \end{bmatrix} )^T


= [342461218]\begin{bmatrix} 3 & 4 & -2 \\ 4 & -6 & 1\\ -2 & 1 & 8\\ \end{bmatrix} = A


LHS = RHS




(b) (A - B) ^T=A^T - B^T


LHS:


= ([811493956])T(\begin{bmatrix} 8 & -1 & 1 \\ 4 & -9 & 3\\ -9 & -5 & 6\\ \end{bmatrix} )^T


= [849195136]\begin{bmatrix} 8 & 4 & -9 \\ -1 & -9 & -5\\ 1 & 3 & 6\\ \end{bmatrix}




RHS:


= A^T - B^T

= ([302463218])T(\begin{bmatrix} 3 & 0 & 2 \\ 4 & -6 & 3\\ -2 & 1 & 8\\ \end{bmatrix} ) ^T - ([511030762])T(\begin{bmatrix} -5 & 1 &1 \\ 0 & 3 & 0 \\ 7 & 6 & 2 \\ \end{bmatrix})^T


= [849195136]\begin{bmatrix} 8 & 4 & -9 \\ -1 & -9 & -5\\ 1 & 3 & 6\\ \end{bmatrix}



LHS = RHS

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS