Use Cramer's rule to solve the equation below:
y − z = 2
3x + 2y + z = 4
5x + 4y =1Â
"given\\\\\ny \u2212 z = 2\\\\\n3x + 2y + z = 4\\\\\n5x + 4y =1 \\\\\nwe\\space can\\space write\\space this\\space as\\\\\n0x+y \u2212 z = 2\\\\\n3x + 2y + z = 4\\\\\n5x + 4y +0z=1 \\\\\n\nStep \\space 1: \\space Find\\space the \\space determinant\\space of \\space the\\space coefficient\\space matrix.\\\\\n\n\n\\begin{vmatrix}\n 0 & 1 & -1\\\\\n 3 & 2 & 1\\\\\n 5 & 4 &0\n\\end{vmatrix} \\\\\n\nNow\\space find\\space determinant \\space as\\space \\\\\n\nD=0(2\u00d70-1\u00d74)+1(1\u00d75-3\u00d70)+(-1)(3\u00d74-2\u00d75)=3\\\\\n\n\n\nStep2:\\space Find \\space the \\space determinant\\space of\\space the\\space x -\\space matrix\\space ( D_x ).\\space X \\space - \\space matrix\\space is \\space formed\\space by \\space replacing\\space the \\space x-column\\space values \\space with \\space the \\space answer-column\\space values\\\\\n\n\\begin{vmatrix}\n 2 & 1 & -1\\\\\n 4& 2 & 1\\\\\n 1 & 4 &0\n\\end{vmatrix} \\\\\n\nNow \\space find \\space determinant \\space = D_x =-21\\\\\n\nStep3:\\space Find\\space the \\space determinant\\space of \\space the\\space y - matrix\\space \\space ( D_y ). \\space Y - matrix\\space is \\space formed\\space by \\space replacing \\space the\\space y-column \\space values\\space with \\space the \\space answer-column \\space values\\\\\n\n\\begin{vmatrix}\n 0 & 2& -1\\\\\n 3 & 4 & 1\\\\\n 5 & 1&0\n\\end{vmatrix} \\\\\n\nNow\\space find \\space determinant \\space = D_y= 27\\\\\n\nStep4:\\space Find\\space the \\space determinant\\space of \\space the\\space z - matrix\\space \\space ( D_z ). \\space Z - matrix\\space is \\space formed\\space by \\space replacing \\space the\\space z-column \\space values\\space with \\space the \\space answer-column \\space values\\\\\n\n\\begin{vmatrix}\n 0 & 1 & 2\\\\\n 3 & 2& 4\\\\\n 5 & 4 &1\n\\end{vmatrix} \\\\\n\nNow\\space find \\space determinant \\space = D_z= 21\\\\\n\n\n\nCramers \\space Rule\\space says\\space that\\space the\\space solutions \\space are\\\\\n\n\n\n\n\nx=\\frac{D_x }{D}=\\frac{-21}{3}=-7\\\\\n\ny=\\frac{D_y }{D}=\\frac{27}{3}=9\\\\\n\nz=\\frac{D_z }{D}=\\frac{21}{3}=7\\\\"
Comments
Leave a comment