Answer to Question #200607 in Linear Algebra for Mpopo

Question #200607

(4.1)Use the reduced row echelon form to determine

2 4 6

0 0 2

2 -1 5


(4.2)Use the reduced row echelon form to determine

1 2 -4

2 -3 1

0 0 2


1
Expert's answer
2021-05-31T15:17:18-0400

4.1--


"\\begin{pmatrix}\n2 & 4 & 6 \\\\\n0 & 0 & 2 \\\\\n2 & -1 & 5\n\\end{pmatrix}"


(i) "R_1 \\rightarrow \\dfrac{R_1}{2}"


"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 0 & 2 \\\\\n2 & -1 & 5\n\\end{pmatrix}"


(ii) "R_3\\rightarrow R_3-2R_1"

"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 0 & 2 \\\\\n0 & -5 & -1\n\\end{pmatrix}"


(iii) Interchange 2 and 3 row

"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & -5 & -1 \\\\\n0 & 0 & 2\n\\end{pmatrix}"


(iv) "R_2 \\rightarrow \\dfrac{R_2}{-5}"


"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 1 & 0.2 \\\\\n0 & 0 & 2\n\\end{pmatrix}"


(v) "R_3 \\rightarrow \\dfrac{R_3}{2}"


"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 1 & 0.2 \\\\\n0 & 0 & 1\n\\end{pmatrix}"


This is the Row Echelon Form of the matrix.

Since there are 3 non -zero rows hence the Rank is = 3


4.2--


"\\begin{pmatrix}\n1 & 2 & -4 \\\\\n2 & -3 & 1 \\\\\n0 & 0 & 2\n\\end{pmatrix}"


(i) "R_2\\rightarrow R_2 -2R_1"

"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -7 & 9 \\\\\n0 & 0 & 2\n\\end{pmatrix}"


(ii) "R_2 \\rightarrow \\dfrac{R_2}{-7}" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 2\n\\end{pmatrix}"

"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 2\n\\end{pmatrix}"


(iii) "R_3 \\rightarrow \\dfrac{R_3}{2}"

"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 1\n\\end{pmatrix}"


This is the Row Echelon Form of the matrix.

There are 3 non -zero rows hence the rank of the matrix = 3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS