(4.1)Use the reduced row echelon form to determine
2 4 6
0 0 2
2 -1 5
(4.2)Use the reduced row echelon form to determine
1 2 -4
2 -3 1
0 0 2
4.1--
"\\begin{pmatrix}\n2 & 4 & 6 \\\\\n0 & 0 & 2 \\\\\n2 & -1 & 5\n\\end{pmatrix}"
(i) "R_1 \\rightarrow \\dfrac{R_1}{2}"
"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 0 & 2 \\\\\n2 & -1 & 5\n\\end{pmatrix}"
(ii) "R_3\\rightarrow R_3-2R_1"
"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 0 & 2 \\\\\n0 & -5 & -1\n\\end{pmatrix}"
(iii) Interchange 2 and 3 row
"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & -5 & -1 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
(iv) "R_2 \\rightarrow \\dfrac{R_2}{-5}"
"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 1 & 0.2 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
(v) "R_3 \\rightarrow \\dfrac{R_3}{2}"
"\\begin{pmatrix}\n1 & 2 & 3 \\\\\n0 & 1 & 0.2 \\\\\n0 & 0 & 1\n\\end{pmatrix}"
This is the Row Echelon Form of the matrix.
Since there are 3 non -zero rows hence the Rank is = 3
4.2--
"\\begin{pmatrix}\n1 & 2 & -4 \\\\\n2 & -3 & 1 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
(i) "R_2\\rightarrow R_2 -2R_1"
"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -7 & 9 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
(ii) "R_2 \\rightarrow \\dfrac{R_2}{-7}" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 2\n\\end{pmatrix}"
(iii) "R_3 \\rightarrow \\dfrac{R_3}{2}"
"\\Rightarrow" "\\begin{pmatrix}\n1 & 2 & -4 \\\\\n0 & -1 & -9\/7 \\\\\n0 & 0 & 1\n\\end{pmatrix}"
This is the Row Echelon Form of the matrix.
There are 3 non -zero rows hence the rank of the matrix = 3
Comments
Leave a comment