Find A and write the following linear system in the matrix equation form (λI2 − A)X = 0
−x + y = λx
3x + y = λy
For the systems above, find:
(10.1) The determinant (known as the characteristic equation).
(10.2) Solve for λ when det(λI2 − A) = 0.
(10.3) Substitute for each value of λ from (ii) into the equation (λI2 − A)X = 0 and solve the corresponding system for X = x
y
Rewriting the equations,
"x(-1-\\lambda)+y=0"
"3x+y(1-\\lambda)=0"
(1) "\\begin{bmatrix}\n (-1-\\lambda) & 1 \\\\\n 3 & (1-\\lambda)\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y\n\\end{bmatrix}=\\begin{bmatrix}\n 0 \\\\\n 0\n\\end{bmatrix}"
"(-1-\\lambda)(1-\\lambda)-3=-1+\\lambda-\\lambda+\\lambda^2-3"
"=\\lambda^2-4"
(2) when "\\det(\\lambda I_2-A)=0"
"\\Rightarrow\\lambda^2-4=0"
"\\Rightarrow\\lambda=\\pm2"
(3) Substituting the value of "(\\lambda I_2-A)X=0"
For system to be consistent, "\\lambda\\cancel=\\pm2"
"(\\lambda I_2-A)X=0"
"\\begin{bmatrix}\n (-1-\\lambda) & 1 \\\\\n 3 & (1-\\lambda)\n\\end{bmatrix}\\begin{bmatrix}\n x \\\\\n y\n\\end{bmatrix}=\\begin{bmatrix}\n 0 \\\\\n 0\n\\end{bmatrix}"
"x(-1-\\lambda)+y=0"
"x(-1-2)+y=0"
"-3x+y=0"
"3x-y=0"
"3x+y(1-\\lambda)=0"
"3x+y(1-2)=0"
"3x-y=0"
Since both the equations are parallel therefore the system has infinitely many solutions.
Comments
Leave a comment