Answer to Question #198128 in Linear Algebra for sabelo Zwelakhe Xu

Question #198128

Suppose V1,V2,VM is linearly independent in V and W€V.Prove that dim span(V1+W1,V2+W,.....VM+W)> or equal to m-1.


2.Suppose U1,U2,.....Um are finite dimensional subspaces of V.Prove that U1+U2+.....Um is finite dimensional and dim(U1+U2+.....Um)<or equal to dim U1+dim U2+.......dim Um.


1
Expert's answer
2021-05-25T17:32:05-0400

"PROOF1\\\\Prove\\thickspace that\\\\dim\\thickspace Span(v1+w,...,vm+w)\u2264m\u22121.\\\\It\\thickspace should\\thickspace be\\thickspace dim\\thickspace Span(v1+w,...,vm+w)\u2265m\u22121.\\\\By\\thickspace pluggingin\\thickspace w=0,\\\\you\\thickspace could\\thickspace have\\thickspace seenth\\thickspace at\\thickspace the\\thickspace statement\\thickspace of\\thickspace the\\thickspace problem\\thickspace is\\thickspace impossible.\\\\Suppose\\thickspace dimSpan(v1+w,...,vm+w)\u2264m\u22122.\\\\\\thickspace Then\\thickspace the re\\thickspace are\\thickspace at\\thickspace least\\thickspace two\\thickspace vectors\\thickspace that\\thickspace can\\thickspace be\\thickspace written\\thickspace as\\thickspace a\\thickspace linear\\thickspace combination\\thickspace of\\thickspace the\\thickspace others.\\\\Without\\thickspace loss\\thickspace of\\thickspace generality,\\thickspace let\\thickspace them\\thickspace be\\thickspace v1+w\\thickspace and\\thickspace v2+w.\n\\\\Thus\\thickspace we\\thickspace can\\thickspace write:\\\\\nv1+w=a3(v3+w)+\u00b7\u00b7\u00b7+am(vm+w)\\\\\nv2+w=b3(v3+w)+\u00b7\u00b7\u00b7+bm(vm+w)\\\\\nIsolate\\thickspace w\\thickspace to\\thickspace get:\\\\\nw(1\u2212a3\u2212...\u2212am)=\u2212v1+a3v3+\u00b7\u00b7\u00b7+amvm\\\\\nw(1\u2212b3\u2212...\u2212bm)=\u2212v2+b3v3+\u00b7\u00b7\u00b7+bmvm\\\\\nNote\\thickspace that\\thickspace 1\u2212a3\u2212...\u2212am=0\\thickspace and\\thickspace \n1\u2212b3\u2212...\u2212bm=0\\thickspace since\\thickspace otherwise\\thickspace v1\\thickspace and\\thickspace v3\nwould\\thickspace both\\thickspace be\\thickspace written\\thickspace as\\thickspace linear\\thickspace combinations\\thickspace \nof\\thickspace v3,...,vm.\\\\\nThus:\\\\\nw=\\dfrac{1}{1\u2212a3\u2212...\u2212am}(\u2212v1+a3v3+\u00b7\u00b7\u00b7+amvm)\\\\\nw=\\dfrac{1}{1\u2212b3\u2212...\u2212bm}(\u2212v2+b3v3+\u00b7\u00b7\u00b7+bmvm)\\\\\nSubtracting\\thickspace one\\thickspace from\\thickspace the\\thickspace other:\\thickspace \\\\\n\\dfrac{1}{1\u2212a3\u2212...\u2212am}(\u2212v1+a3v3+\u00b7\u00b7\u00b7+amvm)\u2212\\dfrac{1}{1\u2212b3\u2212...\u2212bm}(\u2212v2+b3v3+\u00b7\u00b7\u00b7+bmvm)=0\\\\\nwith\\thickspace not\\thickspace all\\thickspace coefficients\\thickspace zero\\thickspace (in\\thickspace \nparticular,\\thickspace the\\thickspace coefficients\\thickspace of\\thickspace v1\\thickspace and\\thickspace \nv2\\thickspace are\\thickspace non\\thickspace zero.\\thickspace \n\\\\This\\thickspace contradicts\\thickspace the\\thickspace linear\\thickspace independence\\thickspace of\\thickspace v1,...,vm.\\\\\nThus\\thickspace dim\\thickspace Span(v1+w,...,vm+w)\u2265m\u22121.\n\\\\\nPROOF2\\\\\nProof\\thickspace by\\thickspace induction\\thickspace on\\thickspace m.\\\\ Base\\thickspace case.\\\\\\thickspace In\\thickspace the\\thickspace m = 1\\thickspace case,\\thickspace this\\thickspace formula\\thickspace reduces\\thickspace to\\thickspace dim(U1) \u2264 dim(U1), which\\thickspace is\\thickspace trivial.\\\\ Inductive\\thickspace step.\\\\ We\\thickspace assume\\thickspace that\\thickspace dim(U1 +\u00b7\u00b7\u00b7 +Um) \u2264 dim(U1)+\u00b7\u00b7\u00b7+dim(Um) and\\thickspace we\\thickspace will\\thickspace prove\\thickspace that\\thickspace dim(U1 +\u00b7\u00b7\u00b7 +Um +Um+1) \u2264 dim(U1)+\u00b7\u00b7\u00b7+dim(Um)+dim(Um+1).\\\\\\thickspace Let\\thickspace W =U1+\u00b7\u00b7\u00b7+Um.\\\\\\thickspace By\\thickspace a\\thickspace theorem\\thickspace in\\thickspace Axler\\thickspace and\\thickspace our\\thickspace inductive\\thickspace hypothesis,\\thickspace dim(W +Um+1) = dim(W)+dim(Um+1)\u2212dim(W \u2229Um+1) \u2264dim(W)+dim(Um+1) \u2264(dim(U1) +\u00b7\u00b7\u00b7 +dim(Um))+dim(Um+1), as\\thickspace desired.\\\\\\thickspace Therefore,\\thickspace by\\thickspace the\\thickspace PMI,\\thickspace the\\thickspace inequality\\thickspace holds\\thickspace for\\thickspace every\\thickspace m \u2265 1.\\\\"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS