PROOF1ProvethatdimSpan(v1+w,...,vm+w)≤m−1.ItshouldbedimSpan(v1+w,...,vm+w)≥m−1.Byplugginginw=0,youcouldhaveseenthatthestatementoftheproblemisimpossible.SupposedimSpan(v1+w,...,vm+w)≤m−2.Thenthereareatleasttwovectorsthatcanbewrittenasalinearcombinationoftheothers.Withoutlossofgenerality,letthembev1+wandv2+w.Thuswecanwrite:v1+w=a3(v3+w)+⋅⋅⋅+am(vm+w)v2+w=b3(v3+w)+⋅⋅⋅+bm(vm+w)Isolatewtoget:w(1−a3−...−am)=−v1+a3v3+⋅⋅⋅+amvmw(1−b3−...−bm)=−v2+b3v3+⋅⋅⋅+bmvmNotethat1−a3−...−am=0and1−b3−...−bm=0sinceotherwisev1andv3wouldbothbewrittenaslinearcombinationsofv3,...,vm.Thus:w=1−a3−...−am1(−v1+a3v3+⋅⋅⋅+amvm)w=1−b3−...−bm1(−v2+b3v3+⋅⋅⋅+bmvm)Subtractingonefromtheother:1−a3−...−am1(−v1+a3v3+⋅⋅⋅+amvm)−1−b3−...−bm1(−v2+b3v3+⋅⋅⋅+bmvm)=0withnotallcoefficientszero(inparticular,thecoefficientsofv1andv2arenonzero.Thiscontradictsthelinearindependenceofv1,...,vm.ThusdimSpan(v1+w,...,vm+w)≥m−1.PROOF2Proofbyinductiononm.Basecase.Inthem=1case,thisformulareducestodim(U1)≤dim(U1),whichistrivial.Inductivestep.Weassumethatdim(U1+⋅⋅⋅+Um)≤dim(U1)+⋅⋅⋅+dim(Um)andwewillprovethatdim(U1+⋅⋅⋅+Um+Um+1)≤dim(U1)+⋅⋅⋅+dim(Um)+dim(Um+1).LetW=U1+⋅⋅⋅+Um.ByatheoreminAxlerandourinductivehypothesis,dim(W+Um+1)=dim(W)+dim(Um+1)−dim(W∩Um+1)≤dim(W)+dim(Um+1)≤(dim(U1)+⋅⋅⋅+dim(Um))+dim(Um+1),asdesired.Therefore,bythePMI,theinequalityholdsforeverym≥1.
Comments
Leave a comment