let U=2i+2j+k/3,V=i-j/√2 & W=-√2(i+j-4k)/6 .compute the scalar products U.V,U.W &V.W . Check whether U,V & W are orthonormal
"U=2\\hat i+2\\hat j+\\dfrac{1}{3}\\hat k"
"V=\\hat i-\\dfrac{1}{\\sqrt{2}}\\hat j"
"W=-\u221a2(\\hat i+\\hat j-4\\hat k)\/6"
"U.V=\\bigg((2\\times1)+(2\\times\\dfrac{-1}{\\sqrt2})+(\\dfrac{1}{3}\\times0\\bigg)=2-\\sqrt 2=0.58"
"U.W=(2\\times\\dfrac{-\\sqrt 2}{6})+(2\\times-\\dfrac{\\sqrt 2}{6})+(\\dfrac{1}{3}\\times\\dfrac{-4}{6})=-1.37"
"V.W=(1\\times\\dfrac{-\\sqrt2}{6})+(-\\dfrac{1}{\\sqrt2}\\times\\dfrac{-\\sqrt2}{6})+(0\\times\\dfrac{4\\sqrt2}{6})=0.06"
Scalar triple product of three vectors, "U,V,W=(U\\times V).W"
"=\\bigg((2\\times\\dfrac{-1}{\\sqrt2})\\hat k-(2\\times1)\\hat k+(\\dfrac{1}{3}\\times1)\\hat j-(\\dfrac{1}{3}\\times\\dfrac{-1}{\\sqrt 2})\\hat i\\bigg).W"
"=\\bigg(\\dfrac{1}{3\\sqrt2}\\hat i+\\dfrac{1}{3}\\hat j+(-2-\\sqrt2)\\hat k\\bigg).\\bigg(\\dfrac{-\u221a2}{6}(\\hat i+\\hat j-4\\hat k\\bigg)"
"=-\\dfrac{1}{9}-\\dfrac{\\sqrt2}{18}-\\dfrac{8\\sqrt2}{6}-\\dfrac{8}{6}"
"\\cancel=\\space0"
Therefore U, V and W are not orthogonal
Comments
Leave a comment