Answer to Question #197379 in Linear Algebra for Subham

Question #197379

let U=2i+2j+k/3,V=i-j/√2 & W=-√2(i+j-4k)/6 .compute the scalar products U.V,U.W &V.W . Check whether U,V & W are orthonormal


1
Expert's answer
2021-05-24T17:16:53-0400

"U=2\\hat i+2\\hat j+\\dfrac{1}{3}\\hat k"

"V=\\hat i-\\dfrac{1}{\\sqrt{2}}\\hat j"

"W=-\u221a2(\\hat i+\\hat j-4\\hat k)\/6"

"U.V=\\bigg((2\\times1)+(2\\times\\dfrac{-1}{\\sqrt2})+(\\dfrac{1}{3}\\times0\\bigg)=2-\\sqrt 2=0.58"

"U.W=(2\\times\\dfrac{-\\sqrt 2}{6})+(2\\times-\\dfrac{\\sqrt 2}{6})+(\\dfrac{1}{3}\\times\\dfrac{-4}{6})=-1.37"

"V.W=(1\\times\\dfrac{-\\sqrt2}{6})+(-\\dfrac{1}{\\sqrt2}\\times\\dfrac{-\\sqrt2}{6})+(0\\times\\dfrac{4\\sqrt2}{6})=0.06"


Scalar triple product of three vectors, "U,V,W=(U\\times V).W"

"=\\bigg((2\\times\\dfrac{-1}{\\sqrt2})\\hat k-(2\\times1)\\hat k+(\\dfrac{1}{3}\\times1)\\hat j-(\\dfrac{1}{3}\\times\\dfrac{-1}{\\sqrt 2})\\hat i\\bigg).W"

"=\\bigg(\\dfrac{1}{3\\sqrt2}\\hat i+\\dfrac{1}{3}\\hat j+(-2-\\sqrt2)\\hat k\\bigg).\\bigg(\\dfrac{-\u221a2}{6}(\\hat i+\\hat j-4\\hat k\\bigg)"

"=-\\dfrac{1}{9}-\\dfrac{\\sqrt2}{18}-\\dfrac{8\\sqrt2}{6}-\\dfrac{8}{6}"

"\\cancel=\\space0"

Therefore U, V and W are not orthogonal


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS