U = 2 i ^ + 2 j ^ + 1 3 k ^ U=2\hat i+2\hat j+\dfrac{1}{3}\hat k U = 2 i ^ + 2 j ^ + 3 1 k ^
V = i ^ − 1 2 j ^ V=\hat i-\dfrac{1}{\sqrt{2}}\hat j V = i ^ − 2 1 j ^
W = − √ 2 ( i ^ + j ^ − 4 k ^ ) / 6 W=-√2(\hat i+\hat j-4\hat k)/6 W = − √2 ( i ^ + j ^ − 4 k ^ ) /6
U . V = ( ( 2 × 1 ) + ( 2 × − 1 2 ) + ( 1 3 × 0 ) = 2 − 2 = 0.58 U.V=\bigg((2\times1)+(2\times\dfrac{-1}{\sqrt2})+(\dfrac{1}{3}\times0\bigg)=2-\sqrt 2=0.58 U . V = ( ( 2 × 1 ) + ( 2 × 2 − 1 ) + ( 3 1 × 0 ) = 2 − 2 = 0.58
U . W = ( 2 × − 2 6 ) + ( 2 × − 2 6 ) + ( 1 3 × − 4 6 ) = − 1.37 U.W=(2\times\dfrac{-\sqrt 2}{6})+(2\times-\dfrac{\sqrt 2}{6})+(\dfrac{1}{3}\times\dfrac{-4}{6})=-1.37 U . W = ( 2 × 6 − 2 ) + ( 2 × − 6 2 ) + ( 3 1 × 6 − 4 ) = − 1.37
V . W = ( 1 × − 2 6 ) + ( − 1 2 × − 2 6 ) + ( 0 × 4 2 6 ) = 0.06 V.W=(1\times\dfrac{-\sqrt2}{6})+(-\dfrac{1}{\sqrt2}\times\dfrac{-\sqrt2}{6})+(0\times\dfrac{4\sqrt2}{6})=0.06 V . W = ( 1 × 6 − 2 ) + ( − 2 1 × 6 − 2 ) + ( 0 × 6 4 2 ) = 0.06
Scalar triple product of three vectors, U , V , W = ( U × V ) . W U,V,W=(U\times V).W U , V , W = ( U × V ) . W
= ( ( 2 × − 1 2 ) k ^ − ( 2 × 1 ) k ^ + ( 1 3 × 1 ) j ^ − ( 1 3 × − 1 2 ) i ^ ) . W =\bigg((2\times\dfrac{-1}{\sqrt2})\hat k-(2\times1)\hat k+(\dfrac{1}{3}\times1)\hat j-(\dfrac{1}{3}\times\dfrac{-1}{\sqrt 2})\hat i\bigg).W = ( ( 2 × 2 − 1 ) k ^ − ( 2 × 1 ) k ^ + ( 3 1 × 1 ) j ^ − ( 3 1 × 2 − 1 ) i ^ ) . W
= ( 1 3 2 i ^ + 1 3 j ^ + ( − 2 − 2 ) k ^ ) . ( − √ 2 6 ( i ^ + j ^ − 4 k ^ ) =\bigg(\dfrac{1}{3\sqrt2}\hat i+\dfrac{1}{3}\hat j+(-2-\sqrt2)\hat k\bigg).\bigg(\dfrac{-√2}{6}(\hat i+\hat j-4\hat k\bigg) = ( 3 2 1 i ^ + 3 1 j ^ + ( − 2 − 2 ) k ^ ) . ( 6 − √2 ( i ^ + j ^ − 4 k ^ )
= − 1 9 − 2 18 − 8 2 6 − 8 6 =-\dfrac{1}{9}-\dfrac{\sqrt2}{18}-\dfrac{8\sqrt2}{6}-\dfrac{8}{6} = − 9 1 − 18 2 − 6 8 2 − 6 8
= 0 \cancel=\space0 = 0
Therefore U, V and W are not orthogonal
Comments