Let v = x u 1 + y u 2 + z u 3 . v=xu_1+yu_2+zu_3. v = x u 1 + y u 2 + z u 3 . Then
( 1 , − 2 , 5 ) = x ( 1 , 1 , 1 ) + y ( 1 , 2 , 3 ) + z ( 2 , − 1 , 1 ) = ( x + y + 2 z , x + 2 y − z , x + 3 y + z ) , (1,-2,5)=x(1,1,1)+y(1,2,3)+z(2,-1,1)=(x+y+2z,x+2y-z,x+3y+z), ( 1 , − 2 , 5 ) = x ( 1 , 1 , 1 ) + y ( 1 , 2 , 3 ) + z ( 2 , − 1 , 1 ) = ( x + y + 2 z , x + 2 y − z , x + 3 y + z ) ,
and hence we get the following system
{ x + y + 2 z = 1 x + 2 y − z = − 2 x + 3 y + z = 5 \begin{cases}
x+y+2z=1\\
x+2y-z=-2\\
x+3y+z=5
\end{cases} ⎩ ⎨ ⎧ x + y + 2 z = 1 x + 2 y − z = − 2 x + 3 y + z = 5
which is equivalent (after substracting from the second row the first row, from the third row the second row) to
{ x + y + 2 z = 1 y − 3 z = − 3 y + 2 z = 7 \begin{cases}
x+y+2z=1\\
y-3z=-3\\
y+2z=7
\end{cases} ⎩ ⎨ ⎧ x + y + 2 z = 1 y − 3 z = − 3 y + 2 z = 7
and (after substracting from the third row the second row) to
{ x + y + 2 z = 1 y − 3 z = − 3 5 z = 10 \begin{cases}
x+y+2z=1\\
y-3z=-3\\
5z=10
\end{cases} ⎩ ⎨ ⎧ x + y + 2 z = 1 y − 3 z = − 3 5 z = 10
It follows that z = 2 , y = 3 z − 3 = 6 − 3 = 3 , z=2,\ y =3z-3=6-3=3, z = 2 , y = 3 z − 3 = 6 − 3 = 3 , and x = 1 − y − 2 z = 1 − 3 − 4 = − 6. x=1-y-2z=1-3-4=-6. x = 1 − y − 2 z = 1 − 3 − 4 = − 6.
We conclude that v = − 6 u 1 + 3 u 2 + 2 u 3 . v=-6u_1+3u_2+2u_3. v = − 6 u 1 + 3 u 2 + 2 u 3 .
Comments