Let A= 1 0 -2 - 1 2 -1 1 3 , and B = 8 3 0 1 4 -7 -5 2 6 Compute A--,(BT)- and B-1A-1. What do you observe about (7.1) (A-1)- in relation to A. (2) (7.2) ((BT)-1)" in relation to B-1. (2) (7.3) (AB)-' in relation to B-1A-1. (3)
"A=\\begin{bmatrix} 1&-1&1\\\\0&2&-1\\\\-2&1&3\\end{bmatrix}\n\n\n,\nB=\\begin{bmatrix} 8&-3&-5\\\\0&+1&2\\\\4&-7&6\\end{bmatrix}"
"|A|=\\begin{vmatrix} 1&-1&1\\\\0&2&-1\\\\-2&1&3\\end{vmatrix}"
"=1(6+1)+1(0-2)+1(0+4)\n\\\\\n =7-2+4=9"
"adj.(A)=\\begin{bmatrix} 7&2&4\\\\4&5&1\\\\-1&1&2\\end{bmatrix}^T =\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"
"A^{-1}=\\dfrac{adj.A}{|A|}=\\dfrac{1}{9}\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"
"=\\begin{bmatrix} \\dfrac{7}{9} &\\dfrac{4}{9}&\\dfrac{-1}{9}\\\\\\\\\\dfrac{2}{9}&\\dfrac{5}{9}&\\dfrac{1}{9}\\\\\\\\\\dfrac{4}{9}&\\dfrac{1}{9}&\\dfrac{2}{9}\\end{bmatrix}"
Similiarly, "B=\\begin{bmatrix} 8&-3&-5\\\\0&+1&2\\\\4&-7&6\\end{bmatrix}"
"\\Rightarrow B^T=\\begin{bmatrix} 8&0&4\\\\-3&1&-7\\\\-5&2&6\\end{bmatrix}"
"|B^T|=8(6+14)-0+4(-6+5)=160-4=156"
"adjB^T=\\begin{bmatrix} 20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}^T=\\begin{bmatrix}20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}"
"(B^T)^{-1}=\\dfrac{adj.B^T}{|B^T|}=\\dfrac{1}{156}\\begin{bmatrix}20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}"
"=\\begin{bmatrix}\\dfrac{20}{156}&\\dfrac{8}{156}&\\dfrac{-4}{156}\\\\\\\\\\dfrac{53}{156}&\\dfrac{68}{156}&\\dfrac{44}{156}\\\\\\\\\\dfrac{-1}{156}&\\dfrac{-16}{156}&\\dfrac{8}{156}\\end{bmatrix}"
Also, "|B|=|B^T|=156"
"adjB=\\begin{bmatrix} 20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}^T=\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}"
So, "B^{-1}=\\dfrac{adj. B}{|B|}=\\dfrac{1}{156}\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}"
So, "B^{-1}A^{-1}=\\dfrac{1}{156}\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}\\dfrac{1}{9}\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"
"=\\dfrac{1}{1404}\\begin{bmatrix} 242&344&71\\\\128&356&28\\\\92&212&64\\end{bmatrix}"
Yes All the relations are correct-
"(A^{-1})^{-1}=A\n\\\\[9pt]\n\n\n[(B^T)^{-1}]^T=B^{-1}\n\\\\[9pt]\n\n\n(AB)^{-1}=B^{-1}A^{-1}"
Comments
Dear FELICIA, please use the panel for submitting a new question.
Show that if A is a matrix with a row of zeros (or a column of zeros), then A cannot have an inverse
Leave a comment