Answer to Question #198230 in Linear Algebra for FELICIA NDANGUMUNI

Question #198230

Let A= 1 0 -2 - 1 2 -1 1 3 , and B = 8 3 0 1 4 -7 -5 2 6 Compute A--,(BT)- and B-1A-1. What do you observe about (7.1) (A-1)- in relation to A. (2) (7.2) ((BT)-1)" in relation to B-1. (2) (7.3) (AB)-' in relation to B-1A-1. (3)


1
Expert's answer
2021-05-25T15:57:37-0400

"A=\\begin{bmatrix} 1&-1&1\\\\0&2&-1\\\\-2&1&3\\end{bmatrix}\n\n\n,\nB=\\begin{bmatrix} 8&-3&-5\\\\0&+1&2\\\\4&-7&6\\end{bmatrix}"


"|A|=\\begin{vmatrix} 1&-1&1\\\\0&2&-1\\\\-2&1&3\\end{vmatrix}"

  

  "=1(6+1)+1(0-2)+1(0+4)\n\\\\\n =7-2+4=9"


"adj.(A)=\\begin{bmatrix} 7&2&4\\\\4&5&1\\\\-1&1&2\\end{bmatrix}^T =\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"

    


"A^{-1}=\\dfrac{adj.A}{|A|}=\\dfrac{1}{9}\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"


"=\\begin{bmatrix} \\dfrac{7}{9} &\\dfrac{4}{9}&\\dfrac{-1}{9}\\\\\\\\\\dfrac{2}{9}&\\dfrac{5}{9}&\\dfrac{1}{9}\\\\\\\\\\dfrac{4}{9}&\\dfrac{1}{9}&\\dfrac{2}{9}\\end{bmatrix}"

     


Similiarly, "B=\\begin{bmatrix} 8&-3&-5\\\\0&+1&2\\\\4&-7&6\\end{bmatrix}"


   "\\Rightarrow B^T=\\begin{bmatrix} 8&0&4\\\\-3&1&-7\\\\-5&2&6\\end{bmatrix}"


"|B^T|=8(6+14)-0+4(-6+5)=160-4=156"


"adjB^T=\\begin{bmatrix} 20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}^T=\\begin{bmatrix}20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}"


"(B^T)^{-1}=\\dfrac{adj.B^T}{|B^T|}=\\dfrac{1}{156}\\begin{bmatrix}20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}"



            "=\\begin{bmatrix}\\dfrac{20}{156}&\\dfrac{8}{156}&\\dfrac{-4}{156}\\\\\\\\\\dfrac{53}{156}&\\dfrac{68}{156}&\\dfrac{44}{156}\\\\\\\\\\dfrac{-1}{156}&\\dfrac{-16}{156}&\\dfrac{8}{156}\\end{bmatrix}"




Also, "|B|=|B^T|=156"


"adjB=\\begin{bmatrix} 20&8&-4\\\\53&68&44\\\\-1&-16&8\\end{bmatrix}^T=\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}"



So, "B^{-1}=\\dfrac{adj. B}{|B|}=\\dfrac{1}{156}\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}"


        


So, "B^{-1}A^{-1}=\\dfrac{1}{156}\\begin{bmatrix}20&53&-1\\\\8&68&-16\\\\-4&44&8\\end{bmatrix}\\dfrac{1}{9}\\begin{bmatrix} 7 &4&-1\\\\2&5&1\\\\4&1&2\\end{bmatrix}"


        "=\\dfrac{1}{1404}\\begin{bmatrix} 242&344&71\\\\128&356&28\\\\92&212&64\\end{bmatrix}"


Yes All the relations are correct-


"(A^{-1})^{-1}=A\n\\\\[9pt]\n\n\n[(B^T)^{-1}]^T=B^{-1}\n\\\\[9pt]\n\n\n(AB)^{-1}=B^{-1}A^{-1}"

   


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
01.07.21, 00:10

Dear FELICIA, please use the panel for submitting a new question.


FELICIA
25.05.21, 02:57

Show that if A is a matrix with a row of zeros (or a column of zeros), then A cannot have an inverse

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS