A = [ 1 − 1 1 0 2 − 1 − 2 1 3 ] , B = [ 8 − 3 − 5 0 + 1 2 4 − 7 6 ] A=\begin{bmatrix} 1&-1&1\\0&2&-1\\-2&1&3\end{bmatrix}
,
B=\begin{bmatrix} 8&-3&-5\\0&+1&2\\4&-7&6\end{bmatrix} A = ⎣ ⎡ 1 0 − 2 − 1 2 1 1 − 1 3 ⎦ ⎤ , B = ⎣ ⎡ 8 0 4 − 3 + 1 − 7 − 5 2 6 ⎦ ⎤
∣ A ∣ = ∣ 1 − 1 1 0 2 − 1 − 2 1 3 ∣ |A|=\begin{vmatrix} 1&-1&1\\0&2&-1\\-2&1&3\end{vmatrix} ∣ A ∣ = ∣ ∣ 1 0 − 2 − 1 2 1 1 − 1 3 ∣ ∣
= 1 ( 6 + 1 ) + 1 ( 0 − 2 ) + 1 ( 0 + 4 ) = 7 − 2 + 4 = 9 =1(6+1)+1(0-2)+1(0+4)
\\
=7-2+4=9 = 1 ( 6 + 1 ) + 1 ( 0 − 2 ) + 1 ( 0 + 4 ) = 7 − 2 + 4 = 9
a d j . ( A ) = [ 7 2 4 4 5 1 − 1 1 2 ] T = [ 7 4 − 1 2 5 1 4 1 2 ] adj.(A)=\begin{bmatrix} 7&2&4\\4&5&1\\-1&1&2\end{bmatrix}^T =\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix} a d j . ( A ) = ⎣ ⎡ 7 4 − 1 2 5 1 4 1 2 ⎦ ⎤ T = ⎣ ⎡ 7 2 4 4 5 1 − 1 1 2 ⎦ ⎤
A − 1 = a d j . A ∣ A ∣ = 1 9 [ 7 4 − 1 2 5 1 4 1 2 ] A^{-1}=\dfrac{adj.A}{|A|}=\dfrac{1}{9}\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix} A − 1 = ∣ A ∣ a d j . A = 9 1 ⎣ ⎡ 7 2 4 4 5 1 − 1 1 2 ⎦ ⎤
= [ 7 9 4 9 − 1 9 2 9 5 9 1 9 4 9 1 9 2 9 ] =\begin{bmatrix} \dfrac{7}{9} &\dfrac{4}{9}&\dfrac{-1}{9}\\\\\dfrac{2}{9}&\dfrac{5}{9}&\dfrac{1}{9}\\\\\dfrac{4}{9}&\dfrac{1}{9}&\dfrac{2}{9}\end{bmatrix} = ⎣ ⎡ 9 7 9 2 9 4 9 4 9 5 9 1 9 − 1 9 1 9 2 ⎦ ⎤
Similiarly, B = [ 8 − 3 − 5 0 + 1 2 4 − 7 6 ] B=\begin{bmatrix} 8&-3&-5\\0&+1&2\\4&-7&6\end{bmatrix} B = ⎣ ⎡ 8 0 4 − 3 + 1 − 7 − 5 2 6 ⎦ ⎤
⇒ B T = [ 8 0 4 − 3 1 − 7 − 5 2 6 ] \Rightarrow B^T=\begin{bmatrix} 8&0&4\\-3&1&-7\\-5&2&6\end{bmatrix} ⇒ B T = ⎣ ⎡ 8 − 3 − 5 0 1 2 4 − 7 6 ⎦ ⎤
∣ B T ∣ = 8 ( 6 + 14 ) − 0 + 4 ( − 6 + 5 ) = 160 − 4 = 156 |B^T|=8(6+14)-0+4(-6+5)=160-4=156 ∣ B T ∣ = 8 ( 6 + 14 ) − 0 + 4 ( − 6 + 5 ) = 160 − 4 = 156
a d j B T = [ 20 53 − 1 8 68 − 16 − 4 44 8 ] T = [ 20 8 − 4 53 68 44 − 1 − 16 8 ] adjB^T=\begin{bmatrix} 20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}^T=\begin{bmatrix}20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix} a d j B T = ⎣ ⎡ 20 8 − 4 53 68 44 − 1 − 16 8 ⎦ ⎤ T = ⎣ ⎡ 20 53 − 1 8 68 − 16 − 4 44 8 ⎦ ⎤
( B T ) − 1 = a d j . B T ∣ B T ∣ = 1 156 [ 20 8 − 4 53 68 44 − 1 − 16 8 ] (B^T)^{-1}=\dfrac{adj.B^T}{|B^T|}=\dfrac{1}{156}\begin{bmatrix}20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix} ( B T ) − 1 = ∣ B T ∣ a d j . B T = 156 1 ⎣ ⎡ 20 53 − 1 8 68 − 16 − 4 44 8 ⎦ ⎤
= [ 20 156 8 156 − 4 156 53 156 68 156 44 156 − 1 156 − 16 156 8 156 ] =\begin{bmatrix}\dfrac{20}{156}&\dfrac{8}{156}&\dfrac{-4}{156}\\\\\dfrac{53}{156}&\dfrac{68}{156}&\dfrac{44}{156}\\\\\dfrac{-1}{156}&\dfrac{-16}{156}&\dfrac{8}{156}\end{bmatrix} = ⎣ ⎡ 156 20 156 53 156 − 1 156 8 156 68 156 − 16 156 − 4 156 44 156 8 ⎦ ⎤
Also, ∣ B ∣ = ∣ B T ∣ = 156 |B|=|B^T|=156 ∣ B ∣ = ∣ B T ∣ = 156
a d j B = [ 20 8 − 4 53 68 44 − 1 − 16 8 ] T = [ 20 53 − 1 8 68 − 16 − 4 44 8 ] adjB=\begin{bmatrix} 20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix}^T=\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix} a d j B = ⎣ ⎡ 20 53 − 1 8 68 − 16 − 4 44 8 ⎦ ⎤ T = ⎣ ⎡ 20 8 − 4 53 68 44 − 1 − 16 8 ⎦ ⎤
So, B − 1 = a d j . B ∣ B ∣ = 1 156 [ 20 53 − 1 8 68 − 16 − 4 44 8 ] B^{-1}=\dfrac{adj. B}{|B|}=\dfrac{1}{156}\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix} B − 1 = ∣ B ∣ a d j . B = 156 1 ⎣ ⎡ 20 8 − 4 53 68 44 − 1 − 16 8 ⎦ ⎤
So, B − 1 A − 1 = 1 156 [ 20 53 − 1 8 68 − 16 − 4 44 8 ] 1 9 [ 7 4 − 1 2 5 1 4 1 2 ] B^{-1}A^{-1}=\dfrac{1}{156}\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}\dfrac{1}{9}\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix} B − 1 A − 1 = 156 1 ⎣ ⎡ 20 8 − 4 53 68 44 − 1 − 16 8 ⎦ ⎤ 9 1 ⎣ ⎡ 7 2 4 4 5 1 − 1 1 2 ⎦ ⎤
= 1 1404 [ 242 344 71 128 356 28 92 212 64 ] =\dfrac{1}{1404}\begin{bmatrix} 242&344&71\\128&356&28\\92&212&64\end{bmatrix} = 1404 1 ⎣ ⎡ 242 128 92 344 356 212 71 28 64 ⎦ ⎤
Yes All the relations are correct-
( A − 1 ) − 1 = A [ ( B T ) − 1 ] T = B − 1 ( A B ) − 1 = B − 1 A − 1 (A^{-1})^{-1}=A
\\[9pt]
[(B^T)^{-1}]^T=B^{-1}
\\[9pt]
(AB)^{-1}=B^{-1}A^{-1} ( A − 1 ) − 1 = A [( B T ) − 1 ] T = B − 1 ( A B ) − 1 = B − 1 A − 1
Comments
Dear FELICIA, please use the panel for submitting a new question.
Show that if A is a matrix with a row of zeros (or a column of zeros), then A cannot have an inverse
Leave a comment