Answer to Question #198230 in Linear Algebra for FELICIA NDANGUMUNI

Question #198230

Let A= 1 0 -2 - 1 2 -1 1 3 , and B = 8 3 0 1 4 -7 -5 2 6 Compute A--,(BT)- and B-1A-1. What do you observe about (7.1) (A-1)- in relation to A. (2) (7.2) ((BT)-1)" in relation to B-1. (2) (7.3) (AB)-' in relation to B-1A-1. (3)


1
Expert's answer
2021-05-25T15:57:37-0400

A=[111021213],B=[8350+12476]A=\begin{bmatrix} 1&-1&1\\0&2&-1\\-2&1&3\end{bmatrix} , B=\begin{bmatrix} 8&-3&-5\\0&+1&2\\4&-7&6\end{bmatrix}


A=111021213|A|=\begin{vmatrix} 1&-1&1\\0&2&-1\\-2&1&3\end{vmatrix}

  

  =1(6+1)+1(02)+1(0+4)=72+4=9=1(6+1)+1(0-2)+1(0+4) \\ =7-2+4=9


adj.(A)=[724451112]T=[741251412]adj.(A)=\begin{bmatrix} 7&2&4\\4&5&1\\-1&1&2\end{bmatrix}^T =\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix}

    


A1=adj.AA=19[741251412]A^{-1}=\dfrac{adj.A}{|A|}=\dfrac{1}{9}\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix}


=[794919295919491929]=\begin{bmatrix} \dfrac{7}{9} &\dfrac{4}{9}&\dfrac{-1}{9}\\\\\dfrac{2}{9}&\dfrac{5}{9}&\dfrac{1}{9}\\\\\dfrac{4}{9}&\dfrac{1}{9}&\dfrac{2}{9}\end{bmatrix}

     


Similiarly, B=[8350+12476]B=\begin{bmatrix} 8&-3&-5\\0&+1&2\\4&-7&6\end{bmatrix}


   BT=[804317526]\Rightarrow B^T=\begin{bmatrix} 8&0&4\\-3&1&-7\\-5&2&6\end{bmatrix}


BT=8(6+14)0+4(6+5)=1604=156|B^T|=8(6+14)-0+4(-6+5)=160-4=156


adjBT=[20531868164448]T=[20845368441168]adjB^T=\begin{bmatrix} 20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}^T=\begin{bmatrix}20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix}


(BT)1=adj.BTBT=1156[20845368441168](B^T)^{-1}=\dfrac{adj.B^T}{|B^T|}=\dfrac{1}{156}\begin{bmatrix}20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix}



            =[20156815641565315668156441561156161568156]=\begin{bmatrix}\dfrac{20}{156}&\dfrac{8}{156}&\dfrac{-4}{156}\\\\\dfrac{53}{156}&\dfrac{68}{156}&\dfrac{44}{156}\\\\\dfrac{-1}{156}&\dfrac{-16}{156}&\dfrac{8}{156}\end{bmatrix}




Also, B=BT=156|B|=|B^T|=156


adjB=[20845368441168]T=[20531868164448]adjB=\begin{bmatrix} 20&8&-4\\53&68&44\\-1&-16&8\end{bmatrix}^T=\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}



So, B1=adj.BB=1156[20531868164448]B^{-1}=\dfrac{adj. B}{|B|}=\dfrac{1}{156}\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}


        


So, B1A1=1156[20531868164448]19[741251412]B^{-1}A^{-1}=\dfrac{1}{156}\begin{bmatrix}20&53&-1\\8&68&-16\\-4&44&8\end{bmatrix}\dfrac{1}{9}\begin{bmatrix} 7 &4&-1\\2&5&1\\4&1&2\end{bmatrix}


        =11404[24234471128356289221264]=\dfrac{1}{1404}\begin{bmatrix} 242&344&71\\128&356&28\\92&212&64\end{bmatrix}


Yes All the relations are correct-


(A1)1=A[(BT)1]T=B1(AB)1=B1A1(A^{-1})^{-1}=A \\[9pt] [(B^T)^{-1}]^T=B^{-1} \\[9pt] (AB)^{-1}=B^{-1}A^{-1}

   


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
01.07.21, 00:10

Dear FELICIA, please use the panel for submitting a new question.


FELICIA
25.05.21, 02:57

Show that if A is a matrix with a row of zeros (or a column of zeros), then A cannot have an inverse

Leave a comment