A = ( − 2 7 1 3 4 1 8 1 5 ) B = ( 8 1 5 3 4 1 − 2 7 1 ) C = ( − 2 7 1 3 4 1 2 − 7 3 ) A=\begin{pmatrix}
−2 & 7 & 1 \\
3 & 4 & 1 \\
8 & 1 & 5
\end{pmatrix}
B=\begin{pmatrix}
8 & 1 & 5 \\
3 & 4 & 1 \\
−2 & 7 & 1
\end{pmatrix}
C=\begin{pmatrix}
−2 & 7 & 1\\
3 & 4 & 1\\
2 & −7 & 3
\end{pmatrix} A = ⎝ ⎛ − 2 3 8 7 4 1 1 1 5 ⎠ ⎞ B = ⎝ ⎛ 8 3 − 2 1 4 7 5 1 1 ⎠ ⎞ C = ⎝ ⎛ − 2 3 2 7 4 − 7 1 1 3 ⎠ ⎞
1 ) E 1 ⋅ A = B ⇒ E 1 = B ⋅ A − 1 ⇒ E 1 = ( 0 0 1 0 1 0 1 0 0 ) 1)~E_1\cdot A=B ~~~ \Rightarrow ~~~ E_1=B\cdot A^{-1} ~~~ \Rightarrow~~~ E_1=\begin{pmatrix}
0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0
\end{pmatrix} 1 ) E 1 ⋅ A = B ⇒ E 1 = B ⋅ A − 1 ⇒ E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
2 ) E 1 ⋅ B = A ⇒ E 1 = A ⋅ B − 1 ⇒ E 1 = ( 0 0 1 0 1 0 1 0 0 ) 2)~E_1\cdot B=A ~~~ \Rightarrow ~~~ E_1=A \cdot B^{-1} ~~~ \Rightarrow~~~ E_1=\begin{pmatrix}
0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0
\end{pmatrix} 2 ) E 1 ⋅ B = A ⇒ E 1 = A ⋅ B − 1 ⇒ E 1 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
3 ) E 2 ⋅ A = C ⇒ E 2 = C ⋅ A − 1 ⇒ E 2 = ( 1 0 0 0 1 0 0 − 2 1 ) 3)~E_2\cdot A=C ~~~ \Rightarrow ~~~ E_2=C\cdot A^{-1} ~~~ \Rightarrow~~~ E_2=\begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1
\end{pmatrix} 3 ) E 2 ⋅ A = C ⇒ E 2 = C ⋅ A − 1 ⇒ E 2 = ⎝ ⎛ 1 0 0 0 1 − 2 0 0 1 ⎠ ⎞
4 ) E 3 ⋅ C = A ⇒ E 3 = A ⋅ C − 1 ⇒ E 3 = ( 1 0 0 0 1 0 0 2 1 ) 4)~E_3\cdot C=A ~~~ \Rightarrow ~~~ E_3=A \cdot C^{-1} ~~~ \Rightarrow~~~ E_3=\begin{pmatrix}
1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1
\end{pmatrix} 4 ) E 3 ⋅ C = A ⇒ E 3 = A ⋅ C − 1 ⇒ E 3 = ⎝ ⎛ 1 0 0 0 1 2 0 0 1 ⎠ ⎞
Here you can find inverse matrices and multiply matrices with a help of online calculators.
Comments