Given,
The vector v ⃗ = < 2 , − 5 , 3 > ∈ R 3 \vec v=<2,-5,3>\ \ \in \R^3 v =< 2 , − 5 , 3 > ∈ R 3
v ⃗ 1 = < 1 , − 3 , 2 > v ⃗ 2 = < 2 , − 4 , − 1 > v ⃗ 3 = < 1 , − 5 , 7 > \vec v_1=<1,-3,2>\\\vec v_2=<2,-4,-1>\\\vec v_3=<1,-5,7> v 1 =< 1 , − 3 , 2 > v 2 =< 2 , − 4 , − 1 > v 3 =< 1 , − 5 , 7 >
Suppose v ⃗ \vec v v can be expressed as linear combination of v ⃗ 1 , v ⃗ 2 a n d v ⃗ 3 \vec v_1,\vec v_2\ and \ \vec v_3 v 1 , v 2 an d v 3
Then,
v ⃗ = x 1 v ⃗ 1 + x 2 v ⃗ 2 + x 2 v ⃗ 3 v ⃗ = x 1 ( 1 − 3 2 ) + x 2 ( 2 − 4 − 1 ) + x 3 ( 1 − 5 7 ) = ( 2 − 5 3 ) \vec v=x_1\vec v_1+x_2\vec v_2+x_2\vec v_3\\\vec v=x_1\begin{pmatrix}
1 \\
-3 \\
2
\end{pmatrix}+x_2\begin{pmatrix}
2\\
-4\\-1
\end{pmatrix}+x_3\begin{pmatrix}
1\\
-5\\7
\end{pmatrix}=\begin{pmatrix}
2 \\
-5\\3
\end{pmatrix} v = x 1 v 1 + x 2 v 2 + x 2 v 3 v = x 1 ⎝ ⎛ 1 − 3 2 ⎠ ⎞ + x 2 ⎝ ⎛ 2 − 4 − 1 ⎠ ⎞ + x 3 ⎝ ⎛ 1 − 5 7 ⎠ ⎞ = ⎝ ⎛ 2 − 5 3 ⎠ ⎞
Augmented matrix of the above system is
[ 1 2 1 ∣ 2 − 3 − 4 − 5 ∣ − 5 2 − 1 7 ∣ 3 ] \begin{bmatrix}
1&2&\ \ 1\ |\ \ \ \ \ 2 \\
-3 & -4& -5\ |\ -5\\2&-1&7\ |\ \ \ 3
\end{bmatrix} ⎣ ⎡ 1 − 3 2 2 − 4 − 1 1 ∣ 2 − 5 ∣ − 5 7 ∣ 3 ⎦ ⎤
Apply elementary row operation
R 2 → R 2 + 3 R 1 R 3 → R 3 − 2 R 1 R_2\rightarrow R_2+3R_1\\R_3\rightarrow R_3-2R_1 R 2 → R 2 + 3 R 1 R 3 → R 3 − 2 R 1
= [ 1 2 1 ∣ 2 0 2 − 2 ∣ 1 0 − 5 5 ∣ − 1 ] =\begin{bmatrix}
1&2&1&|2\\
0&2&-2&|1\\0&-5&5&\ \ \ \ |-1
\end{bmatrix} = ⎣ ⎡ 1 0 0 2 2 − 5 1 − 2 5 ∣2 ∣1 ∣ − 1 ⎦ ⎤
Now,
R 2 → 1 2 R 2 R 3 → 1 5 R 3 R_2\rightarrow \frac{1}{2}R_2\\\ \\R_3\rightarrow \frac{1}{5}R_3 R 2 → 2 1 R 2 R 3 → 5 1 R 3
= [ 1 2 1 ∣ 2 0 1 − 1 ∣ 1 / 2 0 − 1 1 ∣ − 1 / 5 ] =\begin{bmatrix}
1&2&1&|2 \\
0&1&-1&\ \ \ \ |1/2\\0&-1&1&\ \ \ \ \ \ \ \ |-1/5
\end{bmatrix} = ⎣ ⎡ 1 0 0 2 1 − 1 1 − 1 1 ∣2 ∣1/2 ∣ − 1/5 ⎦ ⎤
Also, R 3 → R 3 + R 2 R_3\rightarrow R_3+R_2 R 3 → R 3 + R 2
= [ 1 2 1 ∣ 2 0 1 − 1 ∣ 1 / 2 0 0 0 ∣ 3 / 10 ] =\begin{bmatrix}
1&2&1&|2 \\
0&1&-1&\ \ \ \ |1/2\\0&0&0&|3/10
\end{bmatrix} = ⎣ ⎡ 1 0 0 2 1 0 1 − 1 0 ∣2 ∣1/2 ∣3/10 ⎦ ⎤
From above, we can conclude that there is pivot position in the augmented column.
Hence given system has no solution.
So, Vector v ⃗ \vec v v can't be expressed as linear combination of v ⃗ 1 , v ⃗ 2 a n d v ⃗ 3 \vec v_1,\vec v_2\ and \ \vec v_3 v 1 , v 2 an d v 3
Comments