Question #198381

Show that the vector v = (2, −5, 3) ∈ R 3

cannot be expressed as a linear combination of the

vectors v1= (1, −3, 2), v2= (2, −4, −1), v3= (1, −5, 7).


1
Expert's answer
2021-05-26T03:39:26-0400

Given,

The vector v=<2,5,3>  R3\vec v=<2,-5,3>\ \ \in \R^3

v1=<1,3,2>v2=<2,4,1>v3=<1,5,7>\vec v_1=<1,-3,2>\\\vec v_2=<2,-4,-1>\\\vec v_3=<1,-5,7>


Suppose v\vec v can be expressed as linear combination of v1,v2 and v3\vec v_1,\vec v_2\ and \ \vec v_3

Then,

v=x1v1+x2v2+x2v3v=x1(132)+x2(241)+x3(157)=(253)\vec v=x_1\vec v_1+x_2\vec v_2+x_2\vec v_3\\\vec v=x_1\begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}+x_2\begin{pmatrix} 2\\ -4\\-1 \end{pmatrix}+x_3\begin{pmatrix} 1\\ -5\\7 \end{pmatrix}=\begin{pmatrix} 2 \\ -5\\3 \end{pmatrix}


Augmented matrix of the above system is

[12  1      2345  5217    3]\begin{bmatrix} 1&2&\ \ 1\ |\ \ \ \ \ 2 \\ -3 & -4& -5\ |\ -5\\2&-1&7\ |\ \ \ 3 \end{bmatrix}



Apply elementary row operation

R2R2+3R1R3R32R1R_2\rightarrow R_2+3R_1\\R_3\rightarrow R_3-2R_1


=[12120221055    1]=\begin{bmatrix} 1&2&1&|2\\ 0&2&-2&|1\\0&-5&5&\ \ \ \ |-1 \end{bmatrix}


Now,

R212R2 R315R3R_2\rightarrow \frac{1}{2}R_2\\\ \\R_3\rightarrow \frac{1}{5}R_3


=[1212011    1/2011        1/5]=\begin{bmatrix} 1&2&1&|2 \\ 0&1&-1&\ \ \ \ |1/2\\0&-1&1&\ \ \ \ \ \ \ \ |-1/5 \end{bmatrix}


Also, R3R3+R2R_3\rightarrow R_3+R_2

=[1212011    1/20003/10]=\begin{bmatrix} 1&2&1&|2 \\ 0&1&-1&\ \ \ \ |1/2\\0&0&0&|3/10 \end{bmatrix}


From above, we can conclude that there is pivot position in the augmented column.

Hence given system has no solution.

So, Vector v\vec v can't be expressed as linear combination of v1,v2 and v3\vec v_1,\vec v_2\ and \ \vec v_3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS