solve the system of three variable linear equations
x + 2y = 1
3x + 2y + 4z = 7
-2x + y - 2z = -1
The augmented matrix of the given system is:
Now, "R_3\\rightarrow3R_1-R_3;\\ \\ R_3\\rightarrow2R_1+R_3"
"\\begin{bmatrix}\n 1 & 2 &0:1\\\\\n 0 & 4&-4:4\\\\\n 0&5&-2:1\n\\end{bmatrix}"
"R_2\\rightarrow R_2\/4;"
"\\begin{bmatrix}\n 1 & 2 &0:1\\\\\n 0 & 1&-1:1\\\\\n 0&5&-2:1\n\\end{bmatrix}"
"R_1\\rightarrow R_1-2R_2;\\ \\ R_3\\rightarrow R_3-5R_2"
"\\Rightarrow \\begin{bmatrix}\n 1 & 0 &2:3\\\\\n 0 & 1&-1:1\\\\\n 0&0&3:6\n\\end{bmatrix}"
Comparing on third row,
"3z=6\\Rightarrow [z=2]"
On second row,
On first row,
"\\Rightarrow\\begin{bmatrix}\n x \\\\\n y\\\\\nz\n\\end{bmatrix}=\\begin{bmatrix}\n -1\\\\\n 1\\\\\n2\n\\end{bmatrix}"
Comments
Leave a comment